Physics at Belle II

K.Trabelsi karim.trabelsi@kek.jp

LAL Orsay , March $22^{\text{nd}}\,2017$

$\begin{array}{c} \textbf{De plus Belle...} \\ (more than ever, with renewed vigor) \end{array}$

Belle II, a flavour-factory, <u>a rich physics program...</u>

- $\circ~$ We plan to collect 50 ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:
 - a (Super) B-factory (~ $1.1 \times 10^9 \text{ B}\overline{\text{B}}$ pairs per ab⁻¹)

- a (Super) charm factory (~ $1.3 imes 10^9~
 m c\,\overline{c}$ pairs per ab $^{-1}$)
- a (Super) τ factory (~1.3 × 10⁹ $\tau^+ \tau^-$ pairs per ab⁻¹)
- with Initial State Radiation, effectively scan the range [0.5 10] GeV and measure the $e^{+e^{--1}}$ light hadrons cross section very precisely
- exploit the clean e^+e^- environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ...

<u>Time-dependent CP asymmetries</u> in decays to CP eigenstates

Measurement of $sin 2\beta$

$sin 2\beta$ at Belle II

	Belle	Belle II (50 ab ⁻¹)	
S	0.667 ± 0.023 ± 0.012	$x.xxxx \pm 0.0027 \pm 0.0044$	
Α	$0.006 \pm 0.016 \pm 0.012$	x.xxxx ± 0.0033 ± 0.0037	

anchor of SM

dominated by systematic uncertainties

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

• Theoretically pristine $B \rightarrow DK$ approach

• Access γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$

Semileptonic and leptonic

	Process	Obser.	Theory	Discovery	Sys.	vs	vs	Anomaly	NP
				(ab^{-1})	limit	LHCb	Belle		
				· ·	(ab^{-1})	BESⅢ			
	$B \rightarrow \pi l \nu_l$	$ V_{ub} $	***	-	10	***	***	**	*
•	$B \rightarrow X_u l \nu_l$	$ V_{ub} $	**	-	2	***	**	***	*
•	B ightarrow au u	Br.	***	2	50	***	***	*	***
•	$B ightarrow \mu u$	Br.	***	5	50	***	***	*	***
•	$B ightarrow D^{(*)} l u_l$	$ V_{cb} $	***	-	1	***	*	*	
•	$B \rightarrow X_c l \nu_l$	$ V_{cb} $	***	-	1	**	**	**	**
•	$B ightarrow D^{(*)} au u_{ au}$	$R(D^{(*)})$	***	-	5	**	***	***	***
	$B ightarrow D^{(*)} au u_{ au}$	P_{τ}	***	-	15	***	***	**	***
	$B \rightarrow D^{**} l \nu_l$	$ V_{cb} $	*	-	-	**	***	**	

$|V_{ub}|$ from $B \rightarrow \pi l \nu$ at Belle II

Toy MC studies based on Belle II MC, LQCD forecasts estimated at 5 years (5, 10 ab^{-1}) and 10 years (50 ab^{-1})

including lattice forecasts and error scaling.

LOCD forecasts: [A. Kronfeld, T. Kaneko, S. Simula]

Untagged: 2.1, 1.9 and 1.3 %

The Unitarity Triangle in the year 2025

NB: α with couple of degrees @ Belle II

 \Rightarrow major updates for $|V_{ub}|$, $\frac{\sin 2\beta}{\beta}$, α , γ

2 HDM (type II):
$$B(B^+ \rightarrow \tau^+ \nu) = B_{SM} \times (1 - \frac{m_B^2}{m_{H^+}^2} \tan^2 \beta)$$

 $B_{SM}(B^+ \rightarrow \tau^+ \nu) = \frac{G_F^2 m_B m_\tau^2}{8 \pi} (1 - \frac{m_\tau^2}{m_B^2}) f_B^2 |V_{ub}|^2 \tau_B$

2

uncertainties from $f_{_B}$ and $|\,V_{_{ub}}|$ can be reduced to $B_{_B}$ and other CKM uncertainties by combining with precise $\Delta\,m_d$

$B \rightarrow \tau \nu$ status and projections

observation of $B \rightarrow \mu \nu$ is also expected Integrated Luminosity [ab⁻¹]

 $R(D) = 0.440 \pm 0.058 \pm 0.042$ $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

$R(D^*) = 0.302 \pm 0.030 \pm 0.011$
$R(D^*) = 0.276 \pm 0.034 {}^{+0.029}_{-0.026}$
LHCb
$R(D^*) = 0.336 \pm 0.027 \pm 0.030$
<u>average</u>
$R(D) = 0.403 \pm 0.040 \pm 0.024$
$R(D^*) = 0.310 \pm 0.015 \pm 0.008$

difference with SM predictions is at **3.9** σ level

more precise measurements needed, more observables (τ polarization...)

$\underline{B \rightarrow D^{(*)} \tau \nu \text{ and other observables}}$

Rare B_(s) decays

FCNC are strongly suppressed in the SM: only loops + GIM mechanism
 Any new particle generating new diagrams can change the amplitudes

Sensitivity to new physics in rare B decays

Constraints on NP from radiative B decays

 $\,\circ\,$ inclusive and exclusive branching ratios strongly constrain NP contributions to the real part of C_7

→ \circ more precise measurement of time-dependent CP asymmetry in B→K^{*}y

• improved measurements of the $B \rightarrow K^* e^+ e^-$ angular analysis at very low q^2 • new observables from $B \rightarrow K \pi \pi \gamma$, $\Lambda_h \rightarrow \Lambda \gamma$

Constraints on NP from radiative B decays

Observable	SM prediction		Measurement	
$10^4 \times BR(B \rightarrow X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}$	3.36 ± 0.23	[16]	3.43 ± 0.22	[19]
$10^5 \times { m BR}(B^+ \to K^* \gamma)$	3.43 ± 0.84		4.21 ± 0.18	[19]
$10^5 \times BR(B^0 \rightarrow K^* \gamma)$	3.48 ± 0.81		4.33 ± 0.15	[19]
$10^5 \times \overline{BR}(B_r \to \phi \gamma)$	4.31 ± 0.86		3.5 ± 0.4	[43, 44]
$S(B^0 \to K^* \gamma)$	-0.023 ± 0.015		-0.16 ± 0.22	[19]
$A_{\rm CP}(B^0 \to K^*\gamma)$	0.003 ± 0.001		-0.002 ± 0.015	[19]
$A_{\Delta\Gamma}(B_s \rightarrow \phi \gamma)$	0.031 ± 0.021		-1.0 ± 0.5	[4]
$(P_1)(B^0 \rightarrow K^*e^+e^-)_{[0.002,1.12]}$	0.04 ± 0.02		-0.23 ± 0.24	[45]
$\langle A_T^{\rm Im} \rangle (B^0 \to K^* e^+ e^-)_{[0.002, 1.12]}$	0.0003 ± 0.0002		0.14 ± 0.23	[45]

A.Paul, D.Straub, arXiv:1608.02556

0.2

0

At Belle II, significant improvement in the determination of $A_{CP}(t)$ in $K_{S}^{0}\pi^{0}\gamma$ expected.

- Belle II SVD larger than Belle $(6 \rightarrow 11.5 \text{ cm})$ \Rightarrow 30% more K_s with vertex hits available • Effective tagging eff. 13% better
- Expected errors for **S** measurements of $K_c \pi^0 \gamma$ and $\rho^0 \gamma$.

Electroweak penguins $b \rightarrow sl^+l^-$

⇒ 2 orders of magnitude smaller than b→sγ but rich NP search potential

Many observables:

0

- Branching fractions
- \circ Isospin asymmetry (A_I)
- $\circ~$ Lepton fwd-bwd asymmetry (\mathbf{A}_{FB})

 $\Rightarrow \text{ Exclusive } (B \rightarrow K^{(*)}l^{+}l^{-}) \text{, Inclusive } (B \rightarrow X_{s} l^{+}l^{-})$

Inclusive di-lepton, $B \rightarrow X_s l^+ l^-$

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$B(B \to X_s \ell^+ \ell^-) \ (1.0 < q^2 < 3.5 \ \text{GeV}^2)$	29%	13%	6.6%
$B(B \to X_s \ell^+ \ell^-) \ (3.5 < q^2 < 6.0 \ {\rm GeV^2})$	24%	11%	6.4%
$B(B \rightarrow X_s \ell^+ \ell^-) \ (q^2 > 14.4 \text{ GeV}^2)$	23%	10%	4.7%
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (1.0 < q^2 < 3.5 \ \text{GeV}^2)$	26%	9.7%	3.1%
$A_{FB}(B \to X_s \ell^+ \ell^-)$ (3.5 < q^2 < 6.0 GeV ²)	21%	7.9%	2.6%
$A_{FB}(B \rightarrow X_s \ell^+ \ell^-) \ (q^2 > 14.4 \ { m GeV^2})$	19%	7.3%	2.4%

<u>Test of lepton universality using $b \rightarrow s l^+ l^-$ decays</u>

 $R_{K} = 0.745^{+0.090}_{-0.074}(stat) \pm 0.036(syst)$

most precise measurement to date is in disagreement with SM at 2.6σ level

Lepton Flavor Non-Universality ? (effect seems in µµ, not ee)

<u>cLFV: beyond the Standard Model</u>

$$\mathcal{B}_{\nu SM}(\tau \to \mu \gamma) = \frac{3\alpha}{32\pi} \left| U_{\tau i}^* U_{\mu i} \frac{\Delta m_{3i}^2}{m_W^2} \right|^2 < 10^{-40}$$

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^2} O_{i}^{(6)} + \dots$$

 $\langle n \rangle$

					$\tau \rightarrow 3\mu$	$\tau \rightarrow \mu \gamma$	$ au ightarrow \mu \pi$ ' π	$\tau \rightarrow \mu K K$	$\tau \rightarrow \mu \pi$	$\tau \to \mu \eta^{e}$	
Model	Reference	т→µү	т→µµµ	4-lepton $\rightarrow O_{\rm S}^{4}$	v 🗸	_	_	_	_	_	1
SM+ v oscillations	EPJ C8 (1999) 513	10-40	10-14) /	1	1	1	_	_	
SM+ heavy Maj v _R	PRD 66 (2002) 034008	10 ⁻⁹	10-10		• -	_	✓ (I=1)	\checkmark (I=0,1)	_	-	
Non-universal Z'	PLB 547 (2002) 252	10 ⁻⁹	10-8	lepton-gluon $\rightarrow O_{\rm G}$	G –	_	✓ (1=0) ✓	✓ (1=0,1) ✓	_	_	
SUSY SO(10)	PRD 68 (2003) 033012	10-8	10-10	0	- -	_	-	_	✓ (I=1)	✓ (I=0)	
mSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10 ⁻⁹		, ←	_	_	_	✓ (I=1) -	✓ (I=0) ✓	
SUSY Higgs	PLB 566 (2003) 217	10-10	10-7	~G		n-quark		Celis, C	irigliano. Pa	ssemar (2014	4)
				-	lopio			5010, 0		(201	.7

plans for Dark Sector Physics

exploit the clean e^+e^- environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ...

search for a dark photon decaying invisibly, and the search for an axion-like particle may be possible even in "Phase 2"

The case for new physics manifesting in Belle II

Issues (addressable at a Flavour factory)

→ NP beyond the direct reach of the LHC

- Baryon asymmetry in cosmology
 - \Rightarrow New sources of CPV in quarks and charged leptons
- Finite neutrino masses
 - ⇒ Tau LFV
- Quark and Lepton flavour & mass hierarchy
 - \Rightarrow new symmetry, massive new particles, extended gauge sector
- \circ 19 free parameters
 - \Rightarrow Extensions of SM relate some, (GUTs)
- \circ $\,$ + Puzzling nature of exotic "new" QCD states
- The hidden universe (dark matter)

$let's \ roll \ (-in)...$

Belle II, a flavour-factory A rich physics program...

- Studies of CPV in B decays
- ∘ $b \rightarrow sq \overline{q}$: probe for new sources of CPV
- constraints from the $b \rightarrow s \gamma$ observables
- Many more observables in $b \rightarrow s l^+ l^-$
- Search for the charged Higgs in the $B \rightarrow \tau \nu$, $B \rightarrow D^{(*)} \tau \nu$ decays
- Study of $D^0 \overline{D}^0$ mixing
- $\,\circ\,$ Search for CPV in D and D_s decays
- Studies of exotic charmonium, tetraquark, pentaquark states
- Studies of new bottomonium-like states
- $\circ~$ Search for lepton flavor violation (LFV) in τ decays
- $\circ~$ Search for CPV and study of hadronic τ decays
- Light Higgs searches, DM searches...

More exotic particles ?

1269 citations

831

427

414

Belle top cited papers:

- Observation of a narrow charmonium-like state in exclusive B⁺ → K⁺ J/ψ π⁺ π⁻ decays – PRL 91, 262001 (2016);
- 2) Observation of large CP violation in the neutral B meson system PRL 87, 091802 (2001);
- 3) Observation of a resonance-like structure in the $\pi^{\pm}\psi'$ mass distribution in exclusive $B \rightarrow K \pi^{\pm}\psi'$ decays – PRL 100, 142001 (2008); 489
- 4) A measurement for the branching fraction of inclusive $B \rightarrow X_s \gamma$ at Belle PLB 511, 151 (2001);
- 5) Observation of a near-threshold ω J/ ψ mass enhancement in exclusive B \rightarrow K ω J/ ψ decays PRL 94, 182002 (2005).

Many non-anticipated states have been found at Belle, whose nature has not yet been clarified (molecules, tetraquark...) More surprises in store for Belle II $\ref{eq:model}$

History of Bottomonium-like states @ e⁺e⁻

- Belle collected 120 fb⁻¹ near Y(5S) and 5.6 fb⁻¹ near Y(6S). Y(5S)=Y(10860), Y(6S)=Y(11020)
- Unexpectedly high rate to Y(nS)π⁺π⁻ (n=1,2,3), x10², at Y(5S)
 - PRL 100, 112001 (2008)
- σ(Y(nS)ππ), σ(bb) vs CMS energy: "Y(5S)" peaks offset by 9±4 MeV
 - PRD 82, 091106 (2010)
- Bottomonium-like Z_b[±](10610), Z_b[±] (10650) in 5 channels at Y(5S): Y(nS)π[±], h_b(mP)π[±] (m=1,2)
 - PRL 108, 122001 (2012)
- Neutral Bottomonium-like Z_b⁰(10610) to Y(nS)π⁰ at Y(5S)
 - PRD 88, 052016 (2013)
- Z_b[±](10610), Z_b[±] (10650)→Y(nS)π[±] amplitude analysis yields J^P=1⁺
 - PRD 91, 072003 (2015)

Bottomonium @ Y(6S) in Phase II

- Golden modes via missing mass analysis in phase 2.
 - Y(6S) → π Z_b (π hb(nP))
 - Y(6S) $\rightarrow \pi Z_b (\pi Y(pS)(I+I-))$
- 95 modes in MC7 covering Y(6S) analyses produced (& analysed) see backup

Proof of principle plots (10 fb^{-1,} 50/50 Z_b split)

More physics with Y(6S)

Other possible states at Y(6S)

Y(6S) →	W _b ⁰ γ,	$W_b \! \rightarrow \!$	ηьπ,χьπ,	Υρ
---------	--------------------------------	-------------------------	----------	----

- $Y(6S) \rightarrow W_b^0 \pi^+ \pi^-, W_b \rightarrow \eta_b \pi, \chi_b \pi, Y \rho$ **
- $Y(6S) \rightarrow \gamma X_b (\rightarrow \omega Y(1S))$

 $Y(6S) \rightarrow \pi \pi X_b (\rightarrow \omega Y(1S))$

QCD hybrids in BB*

η transitions for accessing below threshold.

*

**

*

**

Mass [GeV/c²] 11.0 11.0 10.8 10.8

10.6

10.4

10.2

10.0

9.8

Y (65)

Y (45)

Y (35)

Y (25)

Xb

h_(3P)

1. (2P

h_(1P)

X_1(3P

 $\chi_{\rm bl}(1P)$

η (35)

η (25)

ø

pen Beauty

Y (1D)

Complementarity in the observables

 $\circ~$ B to charmless 3-body decays... interpretation in terms of γ measurement require observables from :

experimental observables: the decay rates and direct asymmetries for $B^0 \to K^+ \pi^0 \pi^-$, $B^0 \to K^0 \pi^+ \pi^-$, $B^0 \to K^+ K^0 K^-$ and $B^0 \to K^0 K^0 \overline{K}^0$, and the indirect asymmetries of $B^0 \to K^0 \pi^+ \pi^-$, $B^0 \to K^+ K^0 K^-$ and $B^0 \to K^0 K^0 \overline{K}^0$. With more observables

∘ similarly for $B \rightarrow K \pi$ ($B \rightarrow K_S^0 \pi^0 \dots$), isospin analysis for $\alpha \dots$

<u>e⁺e⁻→light hadrons</u>

• Long standing discrepancy between theory and experiment in the (g-2),

E821 Collaboration, PRL 92, 1618102 (2004)

 $\vec{\mu} = g \frac{e\hbar}{2mc} \cdot \vec{S}$

Experiment: Theory: $(g-2)_{\mu}/2 = 11659208.9 (6.3) \times 10^{-10}$ $(g-2)_{\mu}/2 = 11659181.5 (4.9) \times 10^{-10}$

anomalous magnetic moment

Discrepancy :

: (27.4 ± 8.0) × 10⁻¹⁰

3.5 discrepancy

Most of the uncertainty in the theory prediction comes from the hadronic contribution:

- The vacuum polarization is connected to the e⁺e⁻ → hadrons through the optical theorem;
- At the B-factories we can exploit the initial state radiation (ISR) and the large integrated luminosity to effectively have a "scan" at low invariant masses;
- A large number of exclusive final states has been investigated by BaBar;
- Due to trigger limitations, Belle could not participate to the campaign, but this will be an important topic at Belle II!

 γ hard

Belle(II) LHCb side by side

B-factories

LHCb

 $p p \rightarrow b \overline{b} X$ production of B^+ , B^0 , B_s , B_c , Λ_b ... but also a lot of other particles in the event \Rightarrow lower reconstruction efficiencies

 $\sigma_{b\overline{b}}$ much higher than at the Y(4S)

	√s [GeV]	σ _{ьნ} [nb]	$\sigma_{_{bb}}$ / $\sigma_{_{tot}}$
HERA pA	42 GeV	~30	~10 ⁻⁶
Tevatron	2 TeV	5000	~10 ⁻³
1.40	8 TeV	~3x10 ⁵	~ 5x10 ⁻³
LHC	14 TeV	~6x10 ⁵	~10 ⁻²

b b production cross-section ~ 5×Tevatron , ~ 500,000 × BaBar/Belle !! $\sigma_{b\bar{b}}/\sigma_{total}$ much lower than at the Y(4S) \Rightarrow lower trigger efficienciesB mesons liverelativey longmean decay length $\beta\gamma c\tau \sim 200 \mu m$ mean decay length $\beta\gamma c\tau \sim 7 mm$ data taking period(s)[1999-2010][1999-2010][run I: 2010-2012, run II: 2015-2018][Belle II from 2018][LHCb upgrade from 2020]

Could it be due to new physics ?

- $B \rightarrow \pi l \nu$ is a purely vector current, whereas $B \rightarrow X_u l \nu$ is V A
- Adding right-handed current (V+A), increases vector current but decreases axial-vector current

A negative right-handed current can reduce tension between those two results

 $\begin{array}{lll} \text{Decay} & |V_{ub}| \times 10^3 & \epsilon_R \text{ dependence} \\ B \to \pi \, \ell \bar{\nu} & 3.23 \pm 0.30 & 1 + \epsilon_R \\ B \to X_u \ell \bar{\nu} & 4.39 \pm 0.21 & \sqrt{1 + \epsilon_R^2} \\ B \to \tau \, \bar{\nu}_\tau & 4.32 \pm 0.42 & 1 - \epsilon_R \end{array}$

0

 ϵ_R

0.1

0.2

0.3

Standard Model →

-0.3 -0.2 -0.1

New measurements neeeded, with different approaches also

-04

Signal fit

arXiv:1504.01568

 Λ_b

PV

 p_{\perp}

 p_{\perp}

Corrected mass used to extract the signal

$$M_{corr}=\sqrt{p_{\perp}^2+M_{p\mu}^2}+p_{\perp}$$

 $\underline{Determining |V_{ub}|/|V_{cb}|} arXiv:1504.01568$

 Use ratio of differential rates from lattice calculations to calculate the ratio of CKM elements squared:

0

 $R_{\rm K}^{\rm \, SM}$ = 1, $R_{\rm K^*}^{\rm \, SM}$ = 0.75 (photon pole !)

Angular analysis of $B_d^0 \rightarrow K^* l^+ l^-$ decays

 $\circ~$ Final state described by q^2 = m_{11}^2 and three angles Ω = $(\theta_1,\,\theta_K,\,\varphi)$

 $\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\bar{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell \\ - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big]$

 $\circ~F_{\rm L}$, $A_{\rm FB}$, $S_{\rm i}$ sensitive to $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$

Angular analysis of $B_d^0 \rightarrow K^* \mu^+ \mu^-$ decays

- [arXiv:1512.04442]
- ∘ Projections of fit results for $q^2 \in [1.1, 6.0] \text{ GeV}^2$
- $\circ~$ Good agreement of PDF projections with data in every bin of q^2

Angular analysis of $B_d^0 \rightarrow K^* \mu^+ \mu^-$ decays

[arXiv:1512.04442]

 $+0.16 \pm 0.06 \pm 0.03$

 $-0.23 \pm 0.23 \pm 0.05$

 $+0.10^{+0.11}_{-0.05}$

 $\times 10^{-4}$

 $-0.2^{+1.2}_{-1.2}$

 Measurements in agreement with SM predictions Output Constraints on C₇, complementary with radiative decays⁽²⁾

- $\circ \text{ Angular analysis of } B^0_d \rightarrow K^* e^+ e^- \text{ at very low } q^2 \, (\in [0.0 \overset{A^{\text{free}}}{\underline{}}, 1.120 \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{}}, 22 \overset{+0.05}{\underline{+}} \overset{+0.05}{\underline{}}, 22 \overset{+0.05}{\underline{+}} \overset{+0.05}{\underline{}}, 1.120 \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{}}, 22 \overset{+0.05}{\underline{+}} \overset{+0.05}{\underline{}}, 1.120 \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.05}{\underline{+}} \overset{+0.18}{\underline{+}} \overset{+0.18}{\underline$
- Folded angular observables ($\phi = \phi + \pi$ if $\phi < 0$) S. Jager, J.M. Camalich [arXiv:1412.3283]

• Measurement of F_L , $A_T^{(2)}$, $A_T^{(Im)}$, $A_T^{(Re)}$, sensitive to C_7 as $q^2 \rightarrow 0$

Flavour-Tagging at LHCb

2

 $B_c^0 \rightarrow J/\psi \phi$

Impressive improvements in tagging performance in the last 3 years

1.31

+35%

0.97

Results for B_s \rightarrow J/\psi h^+ h^- at LHCb

CP violating phase

 $[3 \text{ fb}^{-1}, arXiv: 1411.3104]$

 $\phi_s = -0.058 \pm 0.049 \pm 0.006$

CP violating in mixing or direct decay (no CPV: $|\lambda|=1$)

 $|\lambda| = 0.964 \pm 0.019 \pm 0.007$

Decay width difference $\Delta \Gamma_{s} = (\Gamma_{L} - \Gamma_{H}) = 0.0805 \pm 0.0091 \pm 0.0032 \text{ ps}^{-1}$

- 4000 signal events
- Combinatorial background is flat and small
- Very small contributions from mis-ID of $B_d \rightarrow \phi K^{*0}$ and $\Lambda_b \rightarrow \phi p K$
- mixture of CP eigenstates \Rightarrow angular analysis in helicity basis

 $\phi_s = -0.17 \pm 0.15 \pm 0.03$ rad

$$\begin{split} \varphi_{s}(c \overline{c} s) &\sim -0.01 \pm 0.04 \text{ rad} \\ \varphi_{s}(SM) &= -0.0363 \stackrel{+0.0012}{_{-0.0014}} \end{split}$$

 $R(D^{(*)}) = \frac{B \rightarrow D^{(*)} \tau \nu}{B \rightarrow D^{(*)} l \nu}$

Babar and Belle measurements hint to deviation from SM

BaBar (arXiv:1303.0571) observes a 3.4 σ excess over SM expectation ''This excess cannot be explained by a charged Higgs boson in the 2HDM type II ''

$\underbrace{\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \nu \text{ at Belle}}_{\text{(with hadronic tagging)}}$

[arXiv:1507.03233]

projections for large M_{miss}^2 region , $N(D \tau \nu) \sim 300$, $N(D^* \tau \nu) \sim 500$

$\underline{\mathbf{B}} \rightarrow \mathbf{D}^{*+} \tau \mathbf{v} \text{ at } \mathbf{LHCb}$

[arXiv:1506.08614]

$$R(D^*) = \frac{B(\overline{B}^0 \to D^{*+} \tau^- (\mu^- \overline{\nu}_\mu \nu_\tau) \overline{\nu}_\tau)}{B(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_\mu)}$$

363,000 ± 1,600 events in $D^* \mu \nu$ sample $N(D^* \tau \nu)/N(D^* \mu \nu) = (4.54 \pm 0.46)\%$

 $\mathbf{B} \rightarrow \mathbf{X}_{s} \boldsymbol{\gamma}$

 $M(H^{-}) > 540 \text{ GeV at } 95\% \text{ CL}$

limited by statistics : Belle II...