# The CMS High Granularity Calorimeter for the High Luminosity LHC

J.-B. Sauvan LLR CNRS / École Polytechnique

Séminaire LAL – 28/02/2017











# Why the HL-LHC?

The Higgs is the most tangible window to new physics so far And the LHC is a Higgs factory

The detectors exist The infrastructure exists Fastest path to explore the electroweak landscape

But we need luminosity Higgs rare decays:  $H \rightarrow \mu\mu$ ,  $H \rightarrow Z\gamma$ , etc. Vector boson scattering & unitarity tests Double Higgs constraints & Higgs self-coupling



2

## What else? Precision physics



It will be a precision machine Higgs coupling strengths → NP expected around few % to 10%



## What else? Precision physics

#### Current fa<sub>3</sub> measurement

![](_page_3_Figure_2.jpeg)

It will be a precision machine Higgs coupling strengths → NP expected around few % to 10% Higgs coupling structure → Pseudoscalar, higher-order contrib.

#### **HL-LHC** projection

![](_page_3_Figure_5.jpeg)

## What else? High mass searches

It can extend high mass particle searches Reaches lower cross-sections, higher masses SUSY, dark matter, heavy gauge bosons

![](_page_4_Figure_2.jpeg)

# What else? High mass searches

It can extend high mass particle searches Reaches lower cross-sections, higher masses SUSY, dark matter, heavy gauge bosons

![](_page_5_Figure_2.jpeg)

#### SUSY HL-LHC projection summary

And of course new particles discovered during Phase 1 can be studied

## Good physics requires good detectors

Precise reconstruction of objects: electrons, muons, taus, b-jets, etc. High efficiency and background rejection Good MET resolution Efficient forward-jet tagging for VBF, VBS

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_3.jpeg)

# LHC and HL-LHC timeline

![](_page_7_Figure_1.jpeg)

# Why upgrading the calorimeters?

With the current technology signal yield deteriorated by radiation-induced effects Mitigated by laser monitoring, but only to a certain point → Impact on the energy resolution → Constant term: 10% at the end of HL-LHC

![](_page_8_Figure_2.jpeg)

#### te (month/year)

# Relative response of the existing ECAL endcaps

![](_page_8_Figure_5.jpeg)

#### Expected ECAL energy resolution after 3000 fb<sup>-1</sup>

![](_page_8_Figure_7.jpeg)

## What is needed? High granularity

![](_page_9_Picture_1.jpeg)

Top pair event + 140 additional low energy interactions "Classical" spatial view of the vertices

140 – 200 simultaneous interactions High granularity calorimeters and longitudinal segmentation to separate their contributions Vertices concentrated within a few centimeters High granularity tracker to keep low occupancy

## What is needed? Precision timing

Interactions are spread over space and time 100 – 200 ps Disentangle overlapping vertices with precise timing Key resolution: 10-30 ps

#### Beam spot space-time profile

![](_page_10_Figure_4.jpeg)

#### Space-time view of the vertices

![](_page_10_Figure_6.jpeg)

Collisions every 25 ns → "out-of-time pile-up" Fast detector response and fast shaping

## CMS Upgrade overview

Trigger / HLT / DAQ Track information at L1 trigger L1 trigger: 750 kHz, 12.5 μs latency HLT: 7.5 kHz Muon systems Replace DT & CSC FE/BE Complete RPC coverage in 1.5 < η < 2.4 Muon tagging 2.4 < η < 3

New endcap calorimeters

New tracker Rad. tolerant, high granularity, less material Extend coverage to  $\eta = 3.8$  Barrel EM calorimeter Replace FE/BE electronics Lower operating temperature (8°)

# CMS endcap calorimeters

![](_page_12_Picture_1.jpeg)

## HGCal timeline

![](_page_13_Figure_1.jpeg)

## HGCal design overview

![](_page_14_Figure_1.jpeg)

# HGCal design overview (Silicon part)

# Focusing on the Silicon parts And mainly on the ECAL ΕE

| Detector key numbers              |       |      |       |  |
|-----------------------------------|-------|------|-------|--|
|                                   | EE    | FH   | Total |  |
| Area of silicon (m <sup>2</sup> ) | 380   | 209  | 589   |  |
| Channels                          | 4.3M  | 1.8M | 6.1M  |  |
| Detector modules                  | 13.9k | 7.6k | 21.5k |  |
| Weight (one endcap) (tonnes)      | 16.2  | 36.5 | 52.7  |  |
| Number of Si planes               | 28    | 12   | 40    |  |

6 millions channels 3× area silicon in tracker 0.5 and 1 cm<sup>2</sup> cell sizes

Operation at -30°C: CO<sub>2</sub> cooling

Mitigate leakage current Back HCAL also at -30°C?

## Modules

#### Hexagonal silicon sensors built into modules 6" wafers: 2 sensors per module Or 8" wafers: 1 sensor per module 21660 modules

#### Modules mounted on copper cooling plates Embedded pipes 30° sectors = "cassettes"

![](_page_16_Figure_3.jpeg)

## Cassettes cooling

Goal:  $\Delta T = 1-2^{\circ}$  around  $-30^{\circ}C$ Mockup with uniform heat load Results:  $\Delta T = 1.1 - 1.2^{\circ}$ 

# Mockup with heaters and CO<sub>2</sub> cooling

![](_page_17_Picture_3.jpeg)

#### Measured temperatures

![](_page_17_Figure_5.jpeg)

# ECAL mechanical structure (Technical Proposal)

ECAL part inspired by the CALICE design Carbon fiber + Tungsten structure Insertable cassettes

#### HGCal mechanical structure

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

Petals instead of rectangular structure 3 staggered groups of layers Limit the impact of projective cracks

# Evolution from the TP design

#### Limit crack impact further Rotation of each individual layers

![](_page_19_Figure_2.jpeg)

#### Layer rotation

![](_page_19_Picture_4.jpeg)

#### Single layer structure mockup

![](_page_19_Picture_6.jpeg)

#### Cassettes can also be part of the structure Stack of cassettes and absorber plates with spacers Compressed by front and back planes

## Radiation tolerance

#### High fluence Better charge collection of thiner sensors

Leakage current increases linearly with fluence and volume Heating  $\propto I_{leak}$  and Noise  $\propto \sqrt{I_{leak}}$ 

#### Leakage current per volume unit vs fluence

![](_page_20_Figure_4.jpeg)

1MeV neutron equivalent in Silicon, HGC, 3000fb<sup>-1</sup>

![](_page_20_Figure_6.jpeg)

#### Collected signal

![](_page_20_Figure_8.jpeg)

Reduce cell thickness for high fluence regions

## Silicon sensors

Three sensor thicknesses Low pseudorapidity → thicker sensors High pseudorapidity → thiner sensors

| Sensor parameters               |                     |                            |                      |  |  |
|---------------------------------|---------------------|----------------------------|----------------------|--|--|
| Thickness                       | 300 µm              | 200 µm                     | 100 µm               |  |  |
| Maximum dose (Mrad)             | 3                   | 20                         | 100                  |  |  |
| Maximum n fluence ( $cm^{-2}$ ) | $6	imes 10^{14}$    | $2.5 	imes 10^{15}$        | $1	imes 10^{16}$     |  |  |
| EE region                       | $R > 120  {\rm cm}$ | $120 > R > 75 \mathrm{cm}$ | $R < 75 \mathrm{cm}$ |  |  |
| FH region                       | $R > 100  \rm{cm}$  | $100 > R > 60 \mathrm{cm}$ | $R < 60 \mathrm{cm}$ |  |  |
| Si wafer area (m²)              | 290                 | 203                        | 96                   |  |  |
| Cell size (cm <sup>2</sup> )    | 1.05                | 1.05                       | 0.53                 |  |  |
| Cell capacitance (pF)           | 40                  | 60                         | 60                   |  |  |
| Initial $S/N$ for MIP           | 13.7                | 7.0                        | 3.5                  |  |  |
| S/N after 3000 fb <sup>-1</sup> | 6.5                 | 2.7                        | 1.7                  |  |  |

![](_page_21_Figure_3.jpeg)

Cell capacitances increases for thiner sensors Meaning higher noise Smaller cell sizes for 100  $\mu$ m sensors  $\rightarrow$  reduces also the cell occupancy

## Front-end readout chip

#### Critical part of the system Analogue + digital (large buffers, trigger data reduction), high-speed readout

![](_page_22_Figure_2.jpeg)

Low noise Large dynamic range 0.4 fC – 10 pC

![](_page_22_Figure_4.jpeg)

![](_page_22_Figure_5.jpeg)

![](_page_22_Figure_6.jpeg)

#### Baseline

130 nm technology – known radiation hardness Charge + time-over-threshold (ToT) Variants with bi-gain also studied

## Front-end readout components

![](_page_23_Figure_1.jpeg)

## Data path

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

Buffer waiting L1 trigger accept 12.5 µs latency 512 events × 32 bits = 16.4 kb / channel Power consumption: 2 mW / channel

100 fC (~30

MIP)

ADC – ToT

тот

ADC

TOA

Align

Buffer

Align

Buffer

TOT

Charge

(fC)

64 (72) channels

ADC,

LSB

SH

28/02/2017

# Trigger path

![](_page_25_Figure_1.jpeg)

#### Reducing energy resolution

![](_page_25_Figure_3.jpeg)

Trigger cell sums Possible alternative cell geometry

Energy compression 8 bits, log or floating point coding

Output at 40 MHz -300 Tb/s in total

## VFE chip development strategy

Modify existing SKIROC2 chip Add functionalities like ToT, fast timing Faster shaper: 25 ns instead of 200 ns Used for 2017 test beams

Submit several "Test vehicles" Test building blocks, baseline + variants

#### Test Vehicles 1 & 2

![](_page_26_Figure_4.jpeg)

![](_page_26_Picture_5.jpeg)

TV1 Test analogue architecture

TV2 8 channels Test ADC + ToT Buffers

![](_page_26_Figure_8.jpeg)

First "HGROC" ASIC Submission mid-2017 2 more iterations foreseen

## Data concentration

#### Motherboard PCB covering several modules

Separate noise sensitive VFE from concentration / transmission digital activity

![](_page_27_Figure_3.jpeg)

Data transmission in lower radiation region Use 10 Gb/s optical fibers Concentrator aggregating data from several modules Better trigger data reduction

# Trigger: from the front-end to the back-end

![](_page_28_Figure_1.jpeg)

## Energy calibration

#### Calibration chain

Equalization of the cell-to-cell response: inter-calibration Cell weights taking into account absorber and silicon thicknesses Absolute energy scale using standard candles like  $Z \rightarrow ee$ Extrapolation to high energy electrons / photons

![](_page_29_Figure_3.jpeg)

Charge injection circuit 2 overlapping ranges 1 fC – 10 pC

#### Inter-calibration with punch-through

![](_page_29_Figure_6.jpeg)

Inter-calibration Require isolated cell Track MIP signal in layers ±1 < 1% constant term requires 3% precision

## Inter-calibration with "MIP" tracking

![](_page_30_Figure_1.jpeg)

1.5M minimum bias events needed
Noise of 0.4 mips → 3% precision
Events available daily
Can be done at the HLT with L1 rate

![](_page_30_Figure_3.jpeg)

## ECAL simulated intrinsic performance

#### 

Transverse size vs depth

#### Energy resolution (3 thicknesses)

![](_page_31_Figure_3.jpeg)

Electromagnetic shower size Very narrow in the first layers Pile-up rejection, particle separation Moliere radius around 3 cm Energy resolution Stochastic term: - 20% Constant term: target 1% Forward: moderate  $p_T$  = high energy

# Electromagnetic object identification

#### Improved particle identification

Thanks to the high granularity and the longitudinal segmentation

### Shower width

![](_page_32_Figure_4.jpeg)

# Shower start position

#### Reconstruction of the shower axis Improved shower width variables Even without mechanical projectivity

Shower start Separation charged pions vs EM objects

#### Compatibility with expected EM shower length

![](_page_32_Figure_9.jpeg)

Shower length Easily parametrized Logarithmic E dependence Powerful ID variable

# Timing

Per cell  $\Delta t = 50 \text{ ps}$ Cluster resolution: < 20 ps For energy > 10 GeV

![](_page_33_Figure_2.jpeg)

#### Cluster timing resolution vs energy

![](_page_33_Figure_4.jpeg)

Can collect energy deposits within a 30 ps window Electron: Seed and brem photons Jets: reject PU particles

![](_page_33_Figure_6.jpeg)

## Timing and vertex triangulation

#### Reconstruction of vertex space-time from object timing 2 objects needed: e.g. 2 photons 30 ps resolution assumed below

#### Large rapidity gap

![](_page_34_Figure_3.jpeg)

#### Small rapidity gap: triangulation breaks down But can combine information with 4D reconstructed vertices

#### Small rapidity gap

![](_page_34_Figure_6.jpeg)

#### Space-time vertices

![](_page_34_Figure_8.jpeg)

28/02/2017

## Showers separation

![](_page_35_Figure_1.jpeg)

## Test beams

Purpose: test stacked modules Calibration with MIPs, S/N measurements Energy responses, energy and position resolutions Comparisons with simulations

#### Where? @ FNAL & CERN

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

Up to 16 layers, about 15 X<sub>o</sub> Electrons up to 32 GeV Protons at 120 GeV

![](_page_36_Picture_6.jpeg)

**CERN** Up to 8 layers, up to 27 X<sub>o</sub> Electrons up to 250 GeV Pions at 125 GeV, muons from pions

## What has been tested?

![](_page_37_Picture_1.jpeg)

Hexagonal sensors 6<sup>°°</sup> wafers 200 μm thickness 128 channels, 1.1 cm<sup>2</sup> cell size

# Glued stack of baseplace, Kapton<sup>™</sup>, sensor and PCB

![](_page_37_Figure_4.jpeg)

14 cm

# Readout and layer configuration at CERN

#### Module with 2 PCBs

![](_page_38_Picture_2.jpeg)

Double PCB design Flexibility Easily change the top part with different chips

2 SKIROC2 ASICs Developed by Omega for CALICE

Hanging file system Ability to change layer configurations

![](_page_38_Picture_6.jpeg)

![](_page_38_Figure_7.jpeg)

#### Layer configurations

## Response to muons and pions

#### 125 GeV charged pion passing through 8 layers

![](_page_39_Figure_2.jpeg)

Nice MIP signal Muons and pions Noise = 2.4 ADC S/N = 7.4

### Used for calibration

![](_page_39_Figure_5.jpeg)

28/02/2017

## Electrons at 250 GeV

250 GeV electron passing through 8 layers – 27  $X_0$ 

![](_page_40_Figure_2.jpeg)

![](_page_40_Figure_3.jpeg)

![](_page_40_Figure_4.jpeg)

# Electron energy resolution

Energy resolution vs beam energy Low energy points from FNAL High energy points from CERN Overlap between the two

Data / simulation Good agreement

![](_page_41_Figure_3.jpeg)

## Timing tests

![](_page_42_Figure_1.jpeg)

#### Time resolution improves with S/N Constant term: 14 ps, for S > 20 mips

![](_page_42_Figure_3.jpeg)

Timing test with 300 μm layer Fast readout 16 ps for 32 GeV electrons

![](_page_42_Figure_5.jpeg)

CERN beam tests in November 2016 Up to 250 GeV electrons Analysis ongoing

## Short term perspectives

Many more results this year Complete analysis of 2016 test beam data CERN test beams between May and July

2017 beam tests 28 EE layers + 12 FH layers + modified AHCAL prototype Updated readout chip: SKIROC2 \_CMS Full system performance and timing of hadron showers

TDR at the end of the year Refined engineering studies and choices Refined simulation and reconstruction

# Detector structure for 2017 test beams

![](_page_43_Picture_5.jpeg)

ECAL Silicon HCAL AHCAL

![](_page_43_Figure_7.jpeg)

## Summary and conclusion

Very ambitious project of a High Granularity Calorimeter for the HL-LHC Adapted to the extremely harsh environment: pile-up, radiation

> The HGCal provides multiple measurements in one place Energy, tracking, timing

Innovative mechanical, electronics and reconstruction solutions are developed To provide the best possible performance

> The project is progressing at full speed on every aspects On schedule for an operation with the first HL-LHC collisions