Status of the ThomX X-line

ThomX MAC meeting, 20-21 march 2017, LAL Orsay

mjacquet@lal.in2p3.fr

<u>Compact Compton projects</u> → ThomX

Applications: 2 ways to use a Compton beam

1. Using the 2D divergent beam

(biomedical and cultural heritage applications)

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging IMAGING
- Magnification
- RADIOTHERAPY

2. Using the central part of the beam

(cultural heritage / material science applications)

- Fluorescence Spectroscopy
 - \rightarrow chemical composition
- Diffraction
 - \rightarrow structural analyses

Application: Imaging

1. Using the 2D divergent beam

(biomedical and cultural heritage applications)

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging
- Magnification
- RADIOTHERAPY
- Using the central part of the beam
 (cultural heritage / material science applications)
 - Fluorescence Spectroscopy
 - \rightarrow chemical composition
 - Diffraction
 - \rightarrow structural analyses

Application: Therapy

1. Using the 2D divergent beam

(biomedical and cultural heritage applications)

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging IMAGING
- Magnification
- RADIOTHERAPY
- Using the central part of the beam (cultural heritage / material science applications)
 - Fluorescence Spectroscopy
 - \rightarrow chemical composition
 - Diffraction
 - \rightarrow structural analyses

Application: Diffraction

1. Using the 2D divergent beam

(biomedical and cultural heritage applications)

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging IMAGING
- Magnification
- RADIOTHERAPY
- Using the central part of the beam
 (cultural heritage / material science applications)
 - Fluorescence Spectroscopy
 - \rightarrow chemical composition
 - Diffraction
 - → structural analyses

ThomX MAC meeting, LAL, 20-21 mars 2017

$\frac{\text{Diffraction} \rightarrow \text{Structural analyses}}{\text{of a protein at CS Lyncean Tech.}}$

Knowledge of the structure of a protein \rightarrow acceed to its function in the cell

5.10⁶ ph/sec X beam : 120 μm on crystal E=15 KeV ΔE/E = 1.4% Fig. 6 Structure and electron density of MytuGCSPH. a Overview of the structure for MytuGCSPH in ribbon representation. b Electron density from the MytuGCSPH CLS data set at 2.0 Å resolution centered around Trp 14

[J. Struct. Funct. Gen. 11, 2010, 91-100]

Protein MytuGCSPH (crystal size : 250 X 250 X 100 μ m)

(Flux and results comparable with the same analysis realized at a rotating anode)

ThomX MAC meeting, LAL, 20-21 mars 2017

Table 1 (Beam monitoring & Focus device)

Motorized Table

→ Mounting Ok \rightarrow Mvt qualification in progress

Transfocator (focus device) + its holder

Slits

 \rightarrow Lenses delivered soon Mecanics received

Fluo screen

 \rightarrow Mounting foreseen soon

Beam shutter

Diodes detector

Wire

monitor

ESRF beam tests Beam shutter - Beam monitoring (almost all ok)

Motorized holder

Security shutter + shieldings (X-ray hole igloo-hall D1)

Beam monitoring Focus device

Security beam shutter + shieldings

- → Specifications: Radioprotection + Security + X-line
- \rightarrow The realization began

Security beam shutter Connection pipe

Experimental X-hutch (hall D1)

Hexapodes, Goniometer, Monochromator, Detectors

→ Ability of adaptation to a particular analysis technique

Security beam shutter Connection pipe

Experimental X-hutch (hall D1)

Highly versatile equipment

Dosimetry - Beam characterisation

Security beam shutter Connection pipe

Experimental X-hutch (hall D1)

Highly versatile equipment

Dosimetry - Beam characterisation

Security beam shutter Connection pipe

Experimental X-hutch (hall D1)

Highly versatile equipment

Dosimetry - Beam characterisation

Medical Imaging - Radiobiology - Radiotherapy

Security beam shutter Connection pipe

Installation inside Igloo

< end 2017

- Detectors: calls for tender next published
- System Hexa Gonio:
 - Specifications for the call for tender almost ok
 - Complex and expensive devices
 → Delivery in situ has to fit the first X-ray beam

~ mi-end 2018