

#### ThomX Machine Advisory Committee

(LAL Orsay, March 20-21 2017)

# **Ring Beam Dynamics**

A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang

Programme Investissements d'avenir de l'Etat ANR-10-EQPX-51. Financé également par la Région IIe-de-France. Program « Investing in the future » ANR-10-EQPX-51. Work also supported by grants from Région IIe-de-France.

1



3 GHz gun and linac delivering 1 bunch of 1 nC every 20 ms (50 Hz)

- Bunch emittance is ~ 50 nm.rad, energy spread is ~ 0.3% rms
- Nominal energy is 50 MeV, Max is 70 MeV

The bunch is stored over 20 ms in a ring (Rev freq ~ 17 MHz Circ= 18 m)

An Fabry-Perot cavity to store the laser pulse (max ~ 20 mJ)

Up to 10<sup>13</sup> Photons / Second (photon max energy of 90 keV)

## Storage Ring Layout



#### **Storage Ring optics**



Strong quadrupolesK ~  $20 \text{ m}^{-2}$ Short bend radiusR = 352 mmLarge dispersion functionDmax = 0.9 m

#### **Storage Ring frequency map**

TRACY3 code



DA and MA frequency map analysis at injection point  $\beta=3$  m, Disp~0 Stability region including multipoles errors from measurements

Fit the beam pipe aperture

Bunch is injected on axes : 3 rms ~ 0.7 mm

#### **Dipole field analysis**



### **Electron beam damping**

At low energy (50 MeV) there is no beam damping

From Synchrotron radiation :

Losses per turn: 1.6 eVLongitudinal damping time: 1.8 second> 20 ms storage time

Adding the Compton Back-Scattering effect : (20 mJ in the FB cavity)

Losses per turn: 2.4 eVLongitudinal damping time: 1.2 second>> 20 ms storage time

Rising the electron energy to 70 MeV doesn't change the deal ...

## **Collective effects**

Without any beam damping :

Once perturbed, it will never recover

The injected beam is very short for a ring : 1.2 mm or 4 ps rms

The beam is very sensitive to every wakefields

We investigate some collective effects with a 6D tracking code tracking element by elements including :

- Non-linear single electron dynamics
- Longitudinal wakes from
  - Pipe (SOLEIL model from R. Nagaoka data)
  - Space Charge
  - Resistive Wall
  - Coherent Synchrotron Radiation

At present times a complete ThomX pipe element Is investigated by A. Gamelin in a frame of a PhD

#### **Collective effects**

Longitudinal wakefield over 1 turn, 1 nC 50 MeV



Dominant effect : Coherent Synchrotron Radiation

#### Storage Ring beam dynamics First turns ...

#### 1 nC - 50 MeV



Typical longitudinal shape from the linac

Strongly mismatch in the ring Undergoes "turbulent" dynamics Strong collective effects

<u>Strong Needs</u>: Position feedback in the 3 planes <u>Side effects</u> : Horizontal emittance increase <u>Main risk</u> : To brake the bunch / losses

> Finally reach a ring matched form Still subject to some head tail effects

#### Storage Ring beam dynamics First turns ...

Transverse emittance in the first turns versus chromaticities 6D tracking : sextupoles + long. Collective effects at 50 MeV, 1 nC



10 000 turns

#### Storage Ring beam dynamics First turns ...

Bunch size and length at IP in the first turns

6D tracking : sextupoles + long. Collective effects at 50 MeV, 1 nC



#### 50 MeV, 1 nC, 20 mJ

#### Intra-Beam Scattering and Compton Back Scattering



#### Intra-Beam Scattering and Compton Back Scattering

50 MeV, 1 nC, 30 mJ



PhD thesis of Illya Debrot

6D non linear tracking including Collective effect and IBS CBS flux with CAIN code

- => Flux drop by ~20% from previous simplified model
- => Intensive simulations exhibits a risk of bunch breaking due the strong CSR effect
  - <u>Cure</u> : larger momentum compaction

## **Tune spread from residual gaz Ionization**

Vacuum ionization simulation at 50 MeV, 1 nC with a start pressure of 3 10<sup>-10</sup> mbar 6D tracking including cleaning electrodes



The tune spread is kept below 0.003

#### Conclusion

Low energy and compact ring :

- No damping
- Strong magnetic field vs energy
- Short injected bunch & wakefields
- ==> Storing 1 nC (20 mA) while preserving the beam characteristics in order to reach the level of X-ray flux will be a bit challenging

# **Additionnal slides**

## **Dipole modeling**

#### ThomX Tunes vs energy



All codes in good agreement on SOLEIL storage ring with much larger dipole radius

Vertical chromaticity of AT and TRACY3 has been corrected : edge effect

#### **RF** acceptance

MCF = 0.013

MCF = 0.026



| RF acceptance      | nominal | r56 = -0.2 m  | r56 = - 0.4 m |
|--------------------|---------|---------------|---------------|
| Linear (RF bucket) |         | 10%           | 10%           |
| Non linear         |         | -3.2 % +1.8 % | - 6.8 % +4 %  |
| Pipe limit         |         | 2.5 %         | 2.5 %         |

#### **Transverse feedback**



| Source         | Туре      | Growth time | Revolution-by-<br>revolution kicker<br>strength |
|----------------|-----------|-------------|-------------------------------------------------|
| Beam pipe      | TMCI      | -           | >10 nrad                                        |
| geometry       | Head-Tail | 160 µs      |                                                 |
| Resistive Wall |           | 600 µs      | > 2 nrad                                        |
| Ions           |           | < 100 µs    | >20 nrad                                        |

#### Longitudinal feedback



**Touschek beam life time** 



TRACY3 simulation with injected beam characteristics

#### **Transfer Line - Storage Ring**

Pulsed field magnets: 2 fast kickers + Septum



#### Storage Ring feedback system



- <u>Transverse feedback:</u>
  - Detector: one set of additional buttons.
  - Actuator: stripline (4 electrods of 300 mm for acting in H and V planes, rise time < 1 ns)</li>

- <u>Longitudinal feedback (synch tune ~ 400 kHz)</u>:
  - Detector: one set of additional buttons.
  - Actuator: main cavity as longitudinal kicker ("damping time" < 20 μs)</li>

# X line

#### Phase of manufacturing and tests at SERAS and ESRF

**Table 1 - Continuous monitoring** 

Working zone X-hutch (exp & control)



• X-ray obturator

- Diode detector (intensity)
- Slits system (alignment/beam shape) Beam profiler (abs. position)
- Fluorescent screens (beam detection) Transfocator (beam focus)