Including theoretical uncertainties in global (flavor) fits

Luiz Vale Silva

Jožef Stefan Inst.

May 15th, 2017

GDR "QCD": Progresses in algorithms and numerical tools for QCD Orsay, France

Outline

- Introduction
- 2 Extraction of V_{CKM} by CKMfitter
- Treatment of theoretical uncertainties
- Conclusions

 \rightarrow Statistical uncertainties result from the intrinsic variability of data, typically distributed normally

- ightarrow Statistical uncertainties result from the intrinsic variability of data, typically distributed normally
- \rightarrow Theoretical uncertainties are different in nature: they are modeling parameters (ξ), fixed and unknown, that incorporate our incomplete knowledge about the properties of a distribution [Punzi '01] (Ex.: truncation of a perturbative series)

→ Though *a prori* theoretical uncertainties are a universal issue, in the context of quark **flavor physics** they are particularly important, due to the **strong dynamics**

(Cf., e.g., EW global fit extraction of $\{M_Z, \alpha_s(M_Z), \ldots\}$: statistical uncertainties dominate)

→ Though *a prori* theoretical uncertainties are a universal issue, in the context of quark **flavor physics** they are particularly important, due to the **strong dynamics**

(Cf., e.g., EW global fit extraction of $\{M_Z, \alpha_s(M_Z), \ldots\}$: statistical uncertainties dominate)

→ Here: discuss theoretical uncertainties, more specifically in the context of quark flavor physics

> J. Charles, S. Descotes-G., V. Niess, LVS Eur.Phys.J. C77 (2017), 214 [hep-ph/1611.04768]

Outline

- Introduction
- 2 Extraction of V_{CKM} by CKMfitter
- Treatment of theoretical uncertainties
- 4 Conclusions

CKMfitter and required inputs

→ CKMfitter: global fit package Web interface version (comments are welcomed!)

 Examples of classes of processes that require non-perturbative theoretical inputs:

Meson-mixing	$B_{(s)}\overline{B}_{(s)}$, $K\overline{K}$: bag-parameters \widehat{B}_{B_s} , \widehat{B}_{B_g} , \widehat{B}_{B_d} , \widehat{B}_{K}
(semi-)leptonic decays	$\pi \to \ell \nu$, $K \to \pi \ell \nu$, etc.: decay constants, form factors Ex.: f_π , $f_+^{K \to \pi}(0)$

CKMfitter and required inputs

→ **CKMfitter**: global fit package

Web interface version (comments are welcomed!)

 Examples of classes of processes that require non-perturbative theoretical inputs:

Meson-mixing	$B_{(s)}\overline{B}_{(s)}$, $K\overline{K}$: bag-parameters \widehat{B}_{B_s} , \widehat{B}_{B_g} , \widehat{B}_{B_d} , \widehat{B}_{K}
(semi-)leptonic decays	$\pi \to \ell \nu$, $K \to \pi \ell \nu$, etc.: decay constants, form factors Ex.: f_π , $f_+^{K \to \pi}(0)$

- Nowadays, extraction of non-pert. parameters: Lattice QCD
- Dominance of systematic uncertainties (continuum extrapolation, finite volume, mass inter/extrapolations, etc.)

Statistical approach

- **CKMfitter**: Frequentist statistic based on a χ^2 analysis
- χ^2_{min} : goodness-of-fit under SM or NP, estimators for V_{CKM}
- $\Delta \chi^2$ (χ^2 -distributed): **Confidence Level** (CL) intervals
- Range fit (Rfit) scheme incorporates theoretical uncertainties

$$\mathcal{L} \stackrel{Rfit}{=} \mathcal{L}_{stat} \times \mathcal{L}_{theo}$$
, $\chi^2 = -2 \ln \mathcal{L}$ \mathcal{L}_{stat} : agreement of data & prediction \mathcal{L}_{theo} : accuracy of QCD parameters theo. uncertainties strictly contained in a range. Ex.: $\xi \in [-\Delta, \Delta]$

Example in 1D, $0 \pm 1_{stat} \pm 1_{theo}$

flat bottom, quadratic walls

Extraction of the CKM matrix elements

→ Better theoretical control (Lattice QCD), and more accurate data (LEP, KTeV, NA48, BaBar, Belle, CDF, DØ, LHCb, CMS, ...)

Extraction of the CKM matrix elements

 \rightarrow Better theoretical control (Lattice QCD), and more accurate data (LEP, KTeV, NA48, BaBar, Belle, CDF, DØ, LHCb, CMS, ...)

 \rightarrow **Question**: is there a more appropriate statistical approach than Rfit to incorporate theoretical uncertainties, given the present and expected progresses?

Outline

- Introduction
- \bigcirc Extraction of V_{CKM} by CKMfitter
- Treatment of theoretical uncertainties
- 4 Conclusions

Basic concepts in *frequentist* statistic

Gaussian case, without theoretical uncertainty

 \rightarrow Consider an apparatus designed to measure the true value " x_t " of an observable (the one that is actually realized in nature)

$$g(X; x_t) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(X-x_t)^2}{2\sigma^2}\right]$$
 Ex.: LEP \Rightarrow $\widehat{M}_Z^{(1)}, \dots, \widehat{M}_Z^{(N)}$

- \rightarrow Test statistic T: arbitrary as long as small values attest the agreement between the data and the predicted value(s) Ex.: $\mu = M_z^{SM}$) (under a certain hypothesis, \mathcal{H}_{μ} : $x_t = \mu$
- → Maximum Likelihood Ratio (MLR):

[Neyman, Pearson]

$$T(\overrightarrow{X}_0; \mu) = \sum_{i=1}^{N} \frac{(X_0^{(i)} - \mu)^2}{\sigma^2}$$

 \rightarrow From the distribution of the i.i.d. random variable X, we determine the distribution of the test statistic, seen as a function of X

Example: $T(X; \mu) \sim \chi^2(N)$ for each μ

Basic concepts in frequentist statistic

 \rightarrow Given the real data X_0 from a *single* experiment, the probability of measuring a new value of the test statistic in worsen agreement is called the p-value

$$p(X_0; \mu) = \mathcal{P}[T \geq T(X_0; \mu)]$$

$$p(X_0; \mu) \simeq 0.32 \stackrel{\text{1.0}}{\leftrightarrow} T(X_0; \mu) = 1 \equiv (1 \, \sigma)^2,$$

$$p(X_0; \mu) \simeq 0.05 \stackrel{\text{1.0}}{\leftrightarrow} T(X_0; \mu) = 4 \equiv (2 \, \sigma)^2,$$

$$\vdots$$

In formulas:

$$h(T|\mathcal{H}_{\mu}) = \int dX \, \delta[T - T(X; \mu)] \, g(X; \mu)$$

$$\mathcal{P}[T < T(X_0; \mu)] = \int_0^{T(X_0; \mu)} dT \, h(T|\mathcal{H}_{\mu})$$

Basic concepts in frequentist statistic

Ex.:
$$x_t = 0$$
, $\sigma = 1$, w/ $\{X_0^{(1)}, \dots, X_0^{(10)}\}$

- \rightarrow Interpretation of $\alpha\%$ CL intervals: asymptotically, a fraction $\alpha\%$ of the CLs include the true value x_t
- \rightarrow A *p*-value that respects this property (called coverage) is said to be exact
 - CLs $\ni x_t$ in α % times: exact
 - ... in $> \alpha\%$ times: conservative
 - ... in $< \alpha$ % times: aggressive

Modeling theoretical uncertainties

Given the one-dimensional (1D) case: $X \sim X_0 \pm \underbrace{\sigma}_{\textit{statistical}} \pm \underbrace{\Delta}_{\textit{theoretical}}$

- \rightarrow The true value of the theo. uncertainty ξ is fixed and unknown
- \rightarrow Being unknown, one quotes a range $\xi \in \Omega$ and vary ξ
- \rightarrow Usually, one has in mind that $\Omega = [-\Delta, \Delta]$, but this may miss an unexpectedly large value of ξ
- \rightarrow Were ξ known, we would quote instead $(X_0 + \xi) \pm \sigma$

Modeling theoretical uncertainties: random

Random approach

→ Different techniques of calculation lead to different predictions around the exact one (pseudo-randomly distributed)

 \rightarrow Naive Gaussian (nG): $\xi \sim \mathcal{N}_{(0,\Delta)}$

$$\rightarrow$$
 MLR $(\mathcal{H}_{\mu}: x_t = \mu): T(X; \mu) = \frac{(X-\mu)^2}{\sigma^2 + \Delta^2}$

Naive Gaussian: X_0 =0, σ =1, Δ =1 (red) [Δ =0 (blue)] p-value 1.0 0.8 0.6 0.4 0.2 Δ 0.1 1 2 3 μ

Modeling theoretical uncertainties: external

n-external approach

[Scan: Dubois-Felsmann et al.]

- ightarrow In a first step, assume that ξ is known
- ightarrow Family of hypotheses, $\mathcal{H}_{\mu}^{(\xi)}: x_t = \mu + \xi$
- \rightarrow MLR $(\mathcal{H}^{(\xi)}_{\mu})$: $T(X;\mu) = \frac{(X-\mu-\xi)^2}{\sigma^2}$
- \rightarrow Combine the p_{ξ} , for $\xi \in n \times [-\Delta, \Delta]$

Close to what some experiments interpret as theo. uncertainties

Simple 1D case: Rfit and 1-external are equivalent

Modeling theoretical uncertainties: nuisance

MLR:
$$T(X_0; \mu) = -2 \ln \underbrace{\frac{\mathcal{L}_{X_0}(\mu)}{\max_{\mu} \mathcal{L}_{X_0}(\mu)}}_{Simple\ hypothesis} \rightarrow -2 \ln \underbrace{\frac{\max_{\xi} \mathcal{L}_{X_0}(\mu, \xi)}{\max_{\mu, \xi} \mathcal{L}_{X_0}(\mu, \xi)}}_{Composite\ hypothesis}$$

Fixed-*n* nuisance

$$ightarrow \sim$$
 MLR $(\mathcal{H}_{\mu}: x_t = \mu): \ T(X; \mu) = \frac{(X-\mu)^2}{\sigma^2 + \Delta^2}$

- $\rightarrow \xi$ strictly found in $n \times [-\Delta, \Delta]$
- \rightarrow Small *n* may lead to reasonable CLs, but possibly uncovering
- \rightarrow Large *n* avoid uncovering, but lead to large CLs

Modeling theoretical uncertainties: nuisance

Adaptive nuisance

[Charles, Descotes-G., Niess, LVS]

$$\rightarrow \sim$$
MLR $(\mathcal{H}_{\mu}: x_t = \mu): T(X; \mu) = \frac{(X-\mu)^2}{\sigma^2 + \Delta^2}$

 \rightarrow The interval where we look for ξ grows w/ the CL interval we want to quote

 $\rightarrow n$ CL intervals: $\xi \in n \times [-\Delta, \Delta]$

Adapt. nuisance: $X_0=0$, $\sigma=1$, $\Delta=1$ (red) [$\Delta=0$ (blue)] p-value

Designed to deal with:

- Metrology/extraction of parameters $(1-2 \sigma \text{ intervals})$
- ullet Minimizing Type-II (false positive) errors (above \sim 5 σ)

adapt. nuisance for a significance $n \equiv n$ -fixed nuisance

Incorporating theoretical uncertainties

Approaches for dealing with theoretical uncertainties (some guiding principles for choosing a scheme):

- Good coverage properties (at least for the CL significances we are interested in)
- Useful metrology: reasonable size of CL intervals
- Propagation of uncertainties: clear separation of statistical and theoretical uncertainties

- ightarrow Consider $0\pm\sigma\pm\Delta$, w/ fixed $\sigma^2+\Delta^2=1$
- \rightarrow Gaussian units: $\sqrt{2} \operatorname{Erf}^{-1}(1 p(X_0; \mu))$

(red) naive Gaussian (nG); (black) fixed-1 external/Rfit; (blue) fixed-1 nuisance;

(purple) fixed-3 nuisance; (green) adaptive nuisance

CL interval size vs. Δ/σ ; 1σ significance


```
(red) naive Gaussian (nG); (black) fixed-1 external/Rfit \xi \in [-\Delta, \Delta]; (blue) fixed-1 nuisance \xi \in [-\Delta, \Delta]; (purple) fixed-3 nuisance \xi \in 3[-\Delta, \Delta]; (green) adaptive nuisance
```

CL interval size vs. Δ/σ ; 3σ significance

(red) naive Gaussian (nG); (black) fixed-1 external/Rfit $\xi \in [-\Delta, \Delta]$; (blue) fixed-1 nuisance $\xi \in [-\Delta, \Delta]$; (purple) fixed-3 nuisance $\xi \in 3[-\Delta, \Delta]$; (green) adaptive nuisance

CL interval size vs. Δ/σ ; 5 σ significance

(red) naive Gaussian (nG); (black) fixed-1 external/Rfit $\xi \in [-\Delta, \Delta]$; (blue) fixed-1 nuisance $\xi \in [-\Delta, \Delta]$; (purple) fixed-3 nuisance $\xi \in 3[-\Delta, \Delta]$; (green) adaptive nuisance

Frequency of coverage of x_t

Limit case: the simulated ξ is at the edge of $[-\Delta, \Delta]$

$\Delta/\sigma = 3, \ \xi/\Delta = 1$	68.27% CL	95.45% CL	99.73% CL
nG	56.3%	100.0%	100.0%
1-nuisance	68.1%	95.5%	99.7%
adaptive nuisance	68.2%	100.0%	100.0%
$_$ 1-external/ R fit	84.1%	97.7%	99.9%

Unfortunate case: the simulated ξ is outside $[-\Delta, \Delta]$

$\Delta/\sigma = 3, \ \xi/\Delta = 3$	68.27% CL	95.45% CL	99.73% CL
nG	0.00%	0.35%	68.7%
1-nuisance	0.00%	0.00%	0.07%
adaptive nuisance	0.00%	9.60%	99.8%
1-external/ R fit	0.00%	0.00%	0.13%

Multi-dimensional case

$$X_0^{(i)} \pm \sigma_i \pm \Delta_i, \; \xi_i \in [-\Delta_i, \Delta_i] \quad \text{(or } X_0 \pm \sigma \pm \Delta_1 \pm \ldots \pm \Delta_N \text{)}$$

Average: $\xi = \sum_{i=1}^N w_i \, \xi_i, \; \text{w/ weights } \sum_{i=1}^N w_i = 1 \,, w_i \geq 0$

Interval where the bias ξ_i is varied Hyper-cube: assuming extreme values simultaneously $\widehat{\Delta} = \sum_{i=1}^{N} w_i \Delta_i$

Hyper-ball:
$$\widehat{\Delta} = \sqrt{\sum_{i=1}^{N} (w_i \Delta_i)^2}$$

$$\Rightarrow \widehat{X}_0 \pm \widehat{\sigma} \pm \widehat{\Delta}$$

Further issue: "correlated" theoretical uncertainties lead to deformed hyper-cubes and hyper-ellipsoids (Ex.: 100 % \Rightarrow single ξ)

Combining data

Example: combination of different extractions of $B_K^{\overline{\mathrm{MS}}}$ (2 GeV)

(red edges: 1σ ; purple: "naive" average of the CVs)

Combining data

Example: combination of different extractions of $B_K^{\overline{\mathrm{MS}}}$ (2 GeV)

(orange edges: 3σ ; purple: "naive" average of the CVs)

Illustrative global fit extraction of $A, \lambda, \overline{\rho}, \overline{\eta}$

$$|V_{ud}|, |V_{ub}|, |V_{cb}|, \Delta m_d, \Delta m_s, \underline{\alpha, \sin(2\beta), \gamma}$$

[Inputs & details: Charles et al. '16]

Α		
Method		
nG		
Rfit		
1-hypercube		
adapt. hyperball		

3 σ
0.812 ± 0.033
$0.804^{+0.038}_{-0.030}$
0.812 ± 0.038
0.812 ± 0.042

λ
Method
nG
Rfit
1-hypercube
adapt. hyperbal

1 σ	$3~\sigma$
0.2252 ± 0.0007	0.2252 ± 0.0020
$0.2245^{+0.0011}_{-0.0001}$	$0.2245^{+0.0020}_{-0.0001}$
0.2252 ± 0.0011	0.2252 ± 0.0013
0.22525 ± 0.00070	0.2252 ± 0.0022

Illustrative global fit extraction of $A, \lambda, \overline{\rho}, \overline{\eta}$

$$|V_{ud}|, |V_{ub}|, |V_{cb}|, \Delta m_d, \Delta m_s, \underline{\alpha, \sin(2\beta), \gamma}$$

[Inputs & details: Charles et al. '16]

$ar{ ho}$		
Method		
nG		
<i>R</i> fit		
1-hypercube		
adapt. hyperball		

3 σ
0.145 ± 0.027
$0.138^{+0.028}_{-0.020}$
0.145 ± 0.031
0.145 ± 0.036

$ar{\eta}$		
Method		
nG		
<i>R</i> fit		
1-hypercube		
adapt. hyperball		

$1~\sigma$	3 σ
0.343 ± 0.008	0.343 ± 0.023
0.342 ± 0.008	$0.342^{+0.024}_{-0.022}$
$\textbf{0.343} \pm \textbf{0.011}$	0.343 ± 0.027
$\textbf{0.343} \pm \textbf{0.008}$	0.343 ± 0.028

Outline

- Introduction
- 2 Extraction of V_{CKM} by CKMfitter
- Treatment of theoretical uncertainties
- Conclusions

Conclusions

- ightarrow Theoretical uncertainties are omnipresent in flavor analyses and deserve a careful look
- \rightarrow Reported progresses in the modeling of theoretical uncertainties, introducing the adaptive nuisance approach
- → The choice of the scheme has an impact on:
 - confidence level intervals,
 - metrology,
 - significance of a tension, etc.

CKMfitter: adaptive nuisance, candidate for further investigation (coverage properties, clear separation of stat. and theo. uncertainties)

Merci!

CKMfitter collaboration

Jérôme Charles	Theory	CPT Marseille (France)
Olivier Deschamps	LHCb	LPC Clermont-Ferrand (France)
Sébastien Descotes-Genon	Theory	LPT Orsay (France)
Heiko Lacker	ATLAS/BABAR	Humboldt-Universität Berlin (Germany)
Stéphane Monteil	LHCb	LPC Clermont-Ferrand (France)
José Ocariz	ATLAS/BABAR	LPNHE Paris (France)
Jean Orloff	Theory	LPC Clermont-Ferrand (France)
Alejandro Perez	BABAR	IPHC Strasbourg (France)
Luis Pesantez	Belle/Belle II	Melbourne University (Australia)
Wenbin Qian	LHCb	Warwick University (UK)
Vincent Tisserand	LHCb/BABAR	LAPP Annecy-Le-Vieux (France)
Karim Trabelsi	Belle/Belle II	KEK Tsukuba (Japan)
Philip Urquijo	Belle/Belle II	Melbourne University (Australia)
Luiz Vale Silva	Theory	IJS Ljubljana (Slovenia)

Different significances

$$(a_{muon}^{exp} - a_{muon}^{SM}) imes 10^{11} = 288 \pm 63_{exp} \pm 49_{SM}$$

significance of the tension

Significance of the tension		
nG	3.6σ	
1-external/Rfit	3.8σ	
1-nuisance	3.9σ	
adapt. nuisance	2.7σ	

CKMfitter as a numerical tool

Package and computational resources:

- Modular structure: set of files representing different observables
 O in a given model (SM or specific NP) in terms of CKM matrix elements, QCD inputs, etc.;
 - + experimental data files, etc.
- O may have a non-linear dependence on the parameters we want to extract; the numerical step (extremization, etc.) is facilitated by calculating the symbolic expressions for the derivatives
- Both steps may be computationally very demanding and may require the use of a cluster (while simple fits can easily be done in a terminal)

CKMlive

[A. Claude and J. Charles, S. Descotes-G., S. Monteil]

► CKMlive

- Run dedicated CKM fits from CKMfitter package through a web interface
- Global fit (in the SM scenario at this moment) for the extraction of V_{CKM}
- Given set of observables in terms of a given set of parameters
- User chooses the set of observables, and the values of the theoretical and experimental inputs, plus fitting parameters