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Introduction

Statistical and theoretical uncertainties

→ Statistical uncertainties result from the intrinsic variability of data,
typically distributed normally
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Introduction

Statistical and theoretical uncertainties

→ Statistical uncertainties result from the intrinsic variability of data,
typically distributed normally

→ Theoretical uncertainties are different in nature: they are
modeling parameters (ξ), fixed and unknown, that incorporate our
incomplete knowledge about the properties of a distribution [Punzi ’01]

(Ex.: truncation of a perturbative series)
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Introduction

Statistical and theoretical uncertainties

→ Though a prori theoretical uncertainties are a universal issue,
in the context of quark flavor physics they are particularly
important, due to the strong dynamics

(Cf., e.g., EW global fit extraction of {MZ , αs(MZ), . . .}: statistical
uncertainties dominate)
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Introduction

Statistical and theoretical uncertainties

→ Though a prori theoretical uncertainties are a universal issue,
in the context of quark flavor physics they are particularly
important, due to the strong dynamics

(Cf., e.g., EW global fit extraction of {MZ , αs(MZ), . . .}: statistical
uncertainties dominate)

→ Here: discuss theoretical uncertainties,
more specifically in the context of quark flavor physics

J. Charles, S. Descotes-G., V. Niess, LVS
Eur.Phys.J. C77 (2017), 214

[hep-ph/1611.04768]
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Extraction of VCKM by CKMfitter

CKMfitter and required inputs

→ CKMfitter: global fit package CKMfitter

Web interface version (comments are welcomed!) CKMlive

Examples of classes of processes that require non-perturbative
theoretical inputs:

Meson-mixing
B(s)B(s), KK : bag-parameters

B̂Bs
, B̂Bs

/B̂Bd
, B̂K

(semi-)leptonic decays
π → ℓν, K → πℓν, etc.: decay constants, form factors

Ex.: fπ, f
K→π

+ (0)
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Extraction of VCKM by CKMfitter

CKMfitter and required inputs

→ CKMfitter: global fit package CKMfitter

Web interface version (comments are welcomed!) CKMlive

Examples of classes of processes that require non-perturbative
theoretical inputs:

Meson-mixing
B(s)B(s), KK : bag-parameters

B̂Bs
, B̂Bs

/B̂Bd
, B̂K

(semi-)leptonic decays
π → ℓν, K → πℓν, etc.: decay constants, form factors

Ex.: fπ, f
K→π

+ (0)

Nowadays, extraction of non-pert. parameters: Lattice QCD

Dominance of systematic uncertainties

(continuum extrapolation, finite volume, mass
inter/extrapolations, etc.)
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Extraction of VCKM by CKMfitter

Statistical approach

CKMfitter: Frequentist statistic based on a χ2 analysis

χ2
min: goodness-of-fit under SM or NP, estimators for VCKM

∆χ2 (χ2-distributed): Confidence Level (CL) intervals

Range fit (Rfit) scheme incorporates theoretical uncertainties

L Rfit
= Lstat × Ltheo , χ

2 = −2 ℓnL
Lstat : agreement of data & prediction
Ltheo : accuracy of QCD parameters
theo. uncertainties strictly contained

in a range. Ex.: ξ ∈ [−∆,∆]

Example in 1D,

0± 1stat ± 1theo

-3 -2 -1 0 1 2 3
μ

1

2

3

4

5

6

χ²

flat bottom, quadratic walls
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Extraction of VCKM by CKMfitter

Extraction of the CKM matrix elements

→ Better theoretical control (Lattice QCD), and
more accurate data (LEP, KTeV, NA48, BaBar, Belle, CDF, DØ, LHCb, CMS, ...)
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Luiz Vale Silva (Jožef Stefan Inst.) Theo. uncertainties in global fits May 15th, 2017 8 / 32



Extraction of VCKM by CKMfitter

Extraction of the CKM matrix elements

→ Better theoretical control (Lattice QCD), and
more accurate data (LEP, KTeV, NA48, BaBar, Belle, CDF, DØ, LHCb, CMS, ...)

dm∆

K
ε

K
ε

sm∆ & dm∆

ubV

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

1995

CKM
f i t t e r

1995

γ

γ

α

α

dm∆

K
ε

K
ε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xclu

d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

2006

CKM
f i t t e r

2006

γ

γ

Kε

Kε

α
α

dm∆

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xclu

d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ
­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0

η

­1.5

­1.0

­0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

ICHEP 16

CKM
f i t t e r

2016

→ Question: is there a more appropriate statistical approach than
Rfit to incorporate theoretical uncertainties, given the present and
expected progresses?
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Treatment of theoretical uncertainties

Basic concepts in frequentist statistic

Gaussian case, without theoretical uncertainty

→ Consider an apparatus designed to measure the true value “xt”
of an observable (the one that is actually realized in nature)

g(X ; xt) =
1√
2πσ

exp
[
− (X−xt)2

2σ2

]
Ex.: LEP ⇒ M̂

(1)
Z , . . . , M̂

(N)
Z

→ Test statistic T : arbitrary as long as small values attest the
agreement between the data and the predicted value(s)
(under a certain hypothesis, Hµ : xt = µ Ex.: µ = MSM

Z )
→ Maximum Likelihood Ratio (MLR): [Neyman, Pearson]

T (
−→
X 0;µ) =

∑N

i=1
(X

(i)
0 −µ)2

σ2

→ From the distribution of the i.i.d. random variable X , we
determine the distribution of the test statistic, seen as a function of X

Example: T (X ;µ) ∼ χ2(N) for each µ
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Treatment of theoretical uncertainties

Basic concepts in frequentist statistic

→ Given the real data X0 from a single experiment, the probability of
measuring a new value of the test statistic in worsen agreement is
called the p-value

p(X0;µ) = P[T ≥ T (X0;µ)]

p(X0;µ) ≃ 0.32
1D↔ T (X0;µ) = 1 ≡ (1σ)2,

p(X0;µ) ≃ 0.05
1D↔ T (X0;µ) = 4 ≡ (2σ)2,

...
0 2 4 6 8 10

T

0.2

0.4

0.6

0.8

1.0
p.d.f.

In formulas:
h(T |Hµ) =

∫
dX δ[T − T (X ;µ)] g(X ;µ)

P[T < T (X0;µ)] =
∫ T (X0;µ)

0
dT h(T |Hµ)
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Treatment of theoretical uncertainties

Basic concepts in frequentist statistic

-3 -2 -1 0 1 2 3
μ
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p value

Confidence Level intervals

Ex.: xt = 0, σ = 1,
w/ {X (1)

0 , . . . ,X
(10)
0 }

- 4 - 2 0 2 4
�

0.2
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0.6

0.8

1.0
p value

→ Interpretation of α% CL intervals:
asymptotically, a fraction α% of the CLs
include the true value xt
→ A p-value that respects this property
(called coverage) is said to be exact

CLs ∋ xt in α% times: exact

... in > α% times: conservative

... in < α% times: aggressive
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Treatment of theoretical uncertainties

Modeling theoretical uncertainties

Given the one-dimensional (1D) case: X ∼ X0 ± σ︸︷︷︸
statistical

± ∆︸︷︷︸
theoretical

→ The true value of the theo. uncertainty ξ is fixed and unknown

→ Being unknown, one quotes a range ξ ∈ Ω and vary ξ

→ Usually, one has in mind that Ω = [−∆,∆], but this may miss an
unexpectedly large value of ξ

→ Were ξ known, we would quote instead (X0 + ξ)± σ
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Treatment of theoretical uncertainties

Modeling theoretical uncertainties: random

Random approach

→ Different techniques of calculation
lead to different predictions around the
exact one (pseudo-randomly distributed)

→ Naive Gaussian (nG): ξ ∼ N(0,∆)

→ MLR (Hµ : xt = µ): T (X ;µ) = (X−µ)2

σ2+∆2

-3 -2 -1 0 1 2 3
μ

0.2

0.4

0.6

0.8

1.0

p-value
Naive Gaussian: X0=0, σ=1, Δ=1 (red) [Δ=0 (blue)]
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Treatment of theoretical uncertainties

Modeling theoretical uncertainties: external

n-external approach [Scan: Dubois-Felsmann et al.]

→ In a first step, assume that ξ is known

→ Family of hypotheses, H(ξ)
µ : xt = µ+ ξ

→ MLR (H(ξ)
µ ): T (X ;µ) = (X−µ−ξ)2

σ2

→ Combine the pξ, for ξ ∈ n × [−∆,∆]
-3 -2 -1 0 1 2 3

μ

0.2

0.4

0.6

0.8

1.0

p-value
1-external: X0=0, σ=1, Δ=1

Close to what some experiments interpret as theo. uncertainties

Simple 1D case: Rfit and 1-external are equivalent
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Treatment of theoretical uncertainties

Modeling theoretical uncertainties: nuisance

MLR: T (X0;µ) = −2 ℓn
LX0(µ)

maxµLX0(µ)︸ ︷︷ ︸
Simple hypothesis

→ −2 ℓn
maxξ LX0(µ, ξ)

maxµ,ξ LX0(µ, ξ)︸ ︷︷ ︸
Composite hypothesis

Fixed-n nuisance

→ ∼MLR (Hµ : xt = µ): T (X ;µ) = (X−µ)2

σ2+∆2

→ ξ strictly found in n × [−∆,∆]

→ Small n may lead to reasonable CLs,
but possibly uncovering

→ Large n avoid uncovering,
but lead to large CLs
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1-nuisance: X0=0, σ=1, Δ=1 (red) [Δ=0 (blue)]
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1.5,2,2.5,3-nuisance: X0=0, σ=1, Δ=1
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Treatment of theoretical uncertainties

Modeling theoretical uncertainties: nuisance

Adaptive nuisance [Charles, Descotes-G., Niess, LVS]

→ ∼MLR (Hµ : xt = µ): T (X ;µ) = (X−µ)2

σ2+∆2

→ The interval where we look for ξ
grows w/ the CL interval we want to quote

→ n CL intervals: ξ ∈ n × [−∆,∆]
-3 -2 -1 0 1 2 3

μ

0.2

0.4

0.6

0.8

1.0

p-value
Adapt. nuisance: X0=0, σ=1, Δ=1 (red) [Δ=0 (blue)]

Designed to deal with:

Metrology/extraction of parameters (1− 2 σ intervals)

Minimizing Type-II (false positive) errors (above ∼ 5 σ)

adapt. nuisance for a significance n ≡ n-fixed nuisance
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Treatment of theoretical uncertainties

Incorporating theoretical uncertainties

Approaches for dealing with theoretical uncertainties (some guiding
principles for choosing a scheme):

Good coverage properties (at least for the CL significances we
are interested in)

Useful metrology: reasonable size of CL intervals

Propagation of uncertainties: clear separation of statistical and
theoretical uncertainties
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Treatment of theoretical uncertainties

Illustration of confidence level intervals, 1D

→ Consider 0± σ ±∆, w/ fixed σ2 +∆2 = 1
→ Gaussian units:

√
2Erf−1(1− p(X0;µ))
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Significance

(Gaussian units)
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(Gaussian units)
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(red) naive Gaussian (nG); (black) fixed-1 external/Rfit; (blue) fixed-1 nuisance;

(purple) fixed-3 nuisance; (green) adaptive nuisance
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Treatment of theoretical uncertainties

Illustration of confidence level intervals, 1D

CL interval size vs. ∆/σ; 1 σ significance

0 2 4 6 8 10
D

2

4

6

8
Error size

1Σ error

(red) naive Gaussian (nG); (black) fixed-1 external/Rfit ξ ∈ [−∆,∆];
(blue) fixed-1 nuisance ξ ∈ [−∆,∆]; (purple) fixed-3 nuisance ξ ∈ 3[−∆,∆];

(green) adaptive nuisance
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Treatment of theoretical uncertainties

Illustration of confidence level intervals, 1D

CL interval size vs. ∆/σ; 3 σ significance

0 2 4 6 8 10
D
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4
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8
Error size

3Σ error

(red) naive Gaussian (nG); (black) fixed-1 external/Rfit ξ ∈ [−∆,∆];
(blue) fixed-1 nuisance ξ ∈ [−∆,∆]; (purple) fixed-3 nuisance ξ ∈ 3[−∆,∆];

(green) adaptive nuisance
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Treatment of theoretical uncertainties

Illustration of confidence level intervals, 1D

CL interval size vs. ∆/σ; 5 σ significance

0 2 4 6 8 10
D
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Error size

Σ error

(red) naive Gaussian (nG); (black) fixed-1 external/Rfit ξ ∈ [−∆,∆];
(blue) fixed-1 nuisance ξ ∈ [−∆,∆]; (purple) fixed-3 nuisance ξ ∈ 3[−∆,∆];

(green) adaptive nuisance
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Treatment of theoretical uncertainties

Frequency of coverage of xt

Limit case: the simulated ξ is at the edge of [−∆,∆]

∆/σ = 3, ξ/∆ = 1 68.27% CL 95.45% CL 99.73% CL
nG 56.3% 100.0% 100.0%

1-nuisance 68.1% 95.5% 99.7%
adaptive nuisance 68.2% 100.0% 100.0%
1-external/Rfit 84.1% 97.7% 99.9%

Unfortunate case: the simulated ξ is outside [−∆,∆]

∆/σ = 3, ξ/∆ = 3 68.27% CL 95.45% CL 99.73% CL
nG 0.00% 0.35% 68.7%

1-nuisance 0.00% 0.00% 0.07%
adaptive nuisance 0.00% 9.60% 99.8%
1-external/Rfit 0.00% 0.00% 0.13%
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Treatment of theoretical uncertainties

Multi-dimensional case

X
(i)
0 ± σi ±∆i , ξi ∈ [−∆i ,∆i ] (or X0 ± σ ±∆1 ± . . .±∆N)

Average: ξ =
∑N

i=1wi ξi , w/ weights
∑N

i=1wi = 1 ,wi ≥ 0

Interval where the bias ξi is varied

Hyper-cube: assuming extreme values
simultaneously ∆̂ =

∑N

i=1wi∆i

Hyper-ball: ∆̂ =
√∑N

i=1(wi∆i)2

Edges: [−∆i ,∆i ]

⇒ X̂0 ± σ̂ ± ∆̂

Further issue: “correlated” theoretical uncertainties lead to
deformed hyper-cubes and hyper-ellipsoids (Ex.: 100 % ⇒ single ξ)
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Treatment of theoretical uncertainties

Combining data

Example: combination of different extractions of BMS

K (2 GeV)

(theo)

CV stat quad lin

ETMC10 0.532 (19) (12) (26)

LVdW11 0.557 (03) (15) (26)

BMW11 0.564 (06) (06) (10)

RBC-UKQCD12 0.554 (08) (14) (22)

SWME14 0.539 (03) (27) (44)

nG 0.5577 (63) -

Rfit 0.556 (02) (10)

1-hypercube 0.558 (04) (18)

adapt hyperball 0.5577 (38) (50) adapt hyperball

1-hypercube

Rfit

nG

SWME14

RBC-UKQCD12

BMW11

LVdW11

ETMC10

0.50 0.55 0.60 0.65

(red edges: 1 σ; purple: “naive” average of the CVs)
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Treatment of theoretical uncertainties

Combining data

Example: combination of different extractions of BMS

K (2 GeV)

(theo)

CV stat quad lin

ETMC10 0.532 (19) (12) (26)

LVdW11 0.557 (03) (15) (26)

BMW11 0.564 (06) (06) (10)

RBC-UKQCD12 0.554 (08) (14) (22)

SWME14 0.539 (03) (27) (44)

nG 0.5577 (63) -

Rfit 0.556 (02) (10)

1-hypercube 0.558 (04) (18)

adapt hyperball 0.5577 (38) (50) adapt hyperball

1-hypercube

Rfit

nG

SWME14

RBC-UKQCD12

BMW11

LVdW11

ETMC10

0.50 0.55 0.60 0.65

(orange edges: 3 σ; purple: “naive” average of the CVs)
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Treatment of theoretical uncertainties

Illustrative global fit extraction of A, λ, ρ, η

|Vud |, |Vub|, |Vcb|,∆md ,∆ms︸ ︷︷ ︸
theo. dominated

, α, sin(2β), γ︸ ︷︷ ︸
stat. dominated

[Inputs & details: Charles et al. ’16]

A

0.76 0.78 0.80 0.82 0.84 0.86

p
-v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive hyperball

Fixed hypercube

nG

Rfit
A

Method 1 σ 3 σ

nG 0.812± 0.011 0.812 ± 0.033

Rfit 0.804+0.029
−0.014 0.804+0.038

−0.030
1-hypercube 0.812± 0.029 0.812 ± 0.038

adapt. hyperball 0.812± 0.012 0.812 ± 0.042

λ

0.222 0.223 0.224 0.225 0.226 0.227 0.228

p
-v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive hyperball

Fixed hypercube

nG

Rfit
λ

Method 1 σ 3 σ

nG 0.2252 ± 0.0007 0.2252± 0.0020

Rfit 0.2245+0.0011
−0.0001 0.2245+0.0020

−0.0001
1-hypercube 0.2252 ± 0.0011 0.2252± 0.0013

adapt. hyperball 0.22525 ± 0.00070 0.2252± 0.0022
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Treatment of theoretical uncertainties

Illustrative global fit extraction of A, λ, ρ, η

|Vud |, |Vub|, |Vcb|,∆md ,∆ms︸ ︷︷ ︸
theo. dominated

, α, sin(2β), γ︸ ︷︷ ︸
stat. dominated

[Inputs & details: Charles et al. ’16]

ρ

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

p
-v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive hyperball

Fixed hypercube

nG

Rfit
ρ̄

Method 1 σ 3 σ

nG 0.145± 0.009 0.145 ± 0.027

Rfit 0.138± 0.007 0.138+0.028
−0.020

1-hypercube 0.145± 0.015 0.145 ± 0.031
adapt. hyperball 0.145± 0.009 0.145 ± 0.036

η

0.30 0.32 0.34 0.36 0.38 0.40

p
-v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive hyperball

Fixed hypercube

nG

Rfit
η̄

Method 1 σ 3 σ

nG 0.343± 0.008 0.343 ± 0.023

Rfit 0.342± 0.008 0.342+0.024
−0.022

1-hypercube 0.343± 0.011 0.343 ± 0.027
adapt. hyperball 0.343± 0.008 0.343 ± 0.028
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Conclusions

Conclusions

→ Theoretical uncertainties are omnipresent in flavor analyses and
deserve a careful look

→ Reported progresses in the modeling of theoretical uncertainties,
introducing the adaptive nuisance approach

→ The choice of the scheme has an impact on:

confidence level intervals,

metrology,

significance of a tension, etc.

CKMfitter: adaptive nuisance, candidate for further investigation
(coverage properties, clear separation of stat. and theo.
uncertainties)
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Merci !
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Appendix

Different significances

(aexpmuon − aSMmuon)× 1011 = 288± 63exp ± 49SM

significance of the tension
nG 3.6 σ

1-external/Rfit 3.8 σ
1-nuisance 3.9 σ

adapt. nuisance 2.7 σ
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Appendix

CKMfitter as a numerical tool

Package and computational resources:

Modular structure: set of files representing different observables
O in a given model (SM or specific NP) in terms of CKM matrix
elements, QCD inputs, etc.;

+ experimental data files, etc.

O may have a non-linear dependence on the parameters we want
to extract; the numerical step (extremization, etc.) is facilitated
by calculating the symbolic expressions for the derivatives

Both steps may be computationally very demanding and may
require the use of a cluster (while simple fits can easily be done
in a terminal)
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Appendix

CKMlive [A. Claude and J. Charles, S. Descotes-G., S. Monteil]

CKMlive

Run dedicated CKM fits from CKMfitter package through a web
interface

Global fit (in the SM scenario at this moment) for the extraction
of VCKM

Given set of observables in terms of a given set of parameters

User chooses the set of observables, and the values of the
theoretical and experimental inputs, plus fitting parameters
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http://ckmlive.in2p3.fr/
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