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The detection and deblending problems

• Problem : source detection in crowded star fields

Figure 1: Example of crowded star field in the Milky Way (Image credit:

NASA/ESA)

• Current method in SExtractor:
• Matched filter :

• Linear filter that maximizes the output SNR

• Coming back to convolve the input

• Multi thresholding
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Sextractor method

• Background subtraction, matched-filtering, thresholding and

deblending

Figure 2: Example of SExtractor processing. Top left: source image, Top

right: background subtraction and match-filtering, Bottom left: thresholding

and deblending, Bottom right: final image with source shapes 3



Method limitations

Figure 3: Example of SExtractor result using default parameters

• Lack of robustness regarding contaminants

• Heuristic-based filtering, thresholding and deblending

→ Extending the heuristic-based method to convolutional neural

networks for automatic ”intelligent” image segmentation
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Convolutional neural networks and deep learning

• Multilayer neural networks not usable with high dimension inputs

like images

→ Use convolutions

• Translation invariant processing using a small number of trainable

parameters

• Deep learning: stack these layers to capture more and more abstract

input features

Figure 4: Example of convolutional neural network designed for MNIST
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Object detection with deep learning

Figure 5: Deep neural networks for object detection

Figure 6: Learning to segment object candidates 6



Application to deblending in

crowded star fields



Training data

• Data: simulated images using Skymaker

Figure 7: Examples of simulated images using Skymaker
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Image preprocessing

• High dynamic inputs disturb neural network convergence

• I ′ =

{
log(1 + u) if u > 0

−log(1− u) if u < 0
where u = I−I0

kσI−I0

Figure 8: Preprocessed images 8



How to detect (blended) sources ?

• Neural network designed to find a mask where non-zero values are

sources centroids

Figure 9: Example of input/output for the neural network
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Model architecture

Figure 10: Neural network architecture for deblending

Figure 11: First convolutional layer kernels after training
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Results

Figure 12: Example of 3 input/output results
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Performance

Figure 13: Completeness vs contamination for different detection thresholds.

Blue: SExtractor, Red: CNN. Left: good seeing (0.1 arcsec), Right: bad seeing

(1.5 arcsec)

• First approach competitive with the state of the art
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Future prospects

• LAB/CNES PhD: Robust detection of astronomical sources using

convolutional neural networks

→ Universal method and Robustness regarding contaminants

(SExtractor-minded)

• Euclid: probe dark matter, dark energy and the expanding universe

• Precise shear measurements

• Wide and deep fields observations

• Multi-channel detection (visible and infrared)

• Cosmic-DANCe: identify all members of young solar neighborhood

• Precise astrometry in nearby clusters

• Combine different observations with various features

• Multi-channel detection (visible and near-infrared)

• Include a CNN-based detection module in SExtractor++
• Developed by Euclid members

• ISDC, Geneva

• USM, Munich

• CNES, Toulouse
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