Deblending in crowded star fields using convolutional neural networks

Maxime Paillassa¹ and Emmanuel Bertin²

June 27, 2017

¹Laboratoire d'Astrophysique de Bordeaux

²Institut d'Astrophysique de Paris

Table of contents

- 1. The detection and deblending problems
- 2. Application to deblending in crowded star fields

The detection and deblending

problems

The detection and deblending problems

• Problem : source detection in crowded star fields

Figure 1: Example of crowded star field in the Milky Way (Image credit: NASA/ESA)

- Current method in SExtractor:
 - Matched filter:
 - Linear filter that maximizes the output SNR
 - Coming back to convolve the input
 - Multi thresholding

Sextractor method

 Background subtraction, matched-filtering, thresholding and deblending

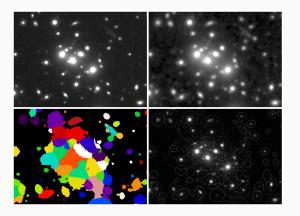


Figure 2: Example of SExtractor processing. Top left: source image, Top right: background subtraction and match-filtering, Bottom left: thresholding and deblending, Bottom right: final image with source shapes

Method limitations

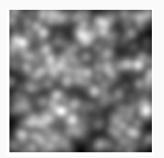


Figure 3: Example of SExtractor result using default parameters

- Lack of robustness regarding contaminants
- Heuristic-based filtering, thresholding and deblending
- ightarrow Extending the heuristic-based method to convolutional neural networks for automatic "intelligent" image segmentation

Convolutional neural networks and deep learning

- Multilayer neural networks not usable with high dimension inputs like images
 - \rightarrow Use convolutions
 - Translation invariant processing using a small number of trainable parameters
 - Deep learning: stack these layers to capture more and more abstract input features

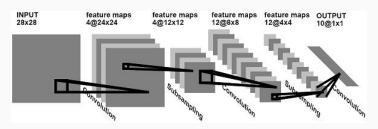


Figure 4: Example of convolutional neural network designed for MNIST

Object detection with deep learning

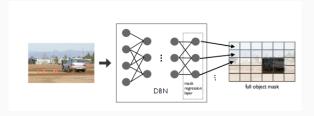


Figure 5: Deep neural networks for object detection

Figure 6: Learning to segment object candidates

Application to deblending in

crowded star fields

Training data

• Data: simulated images using Skymaker

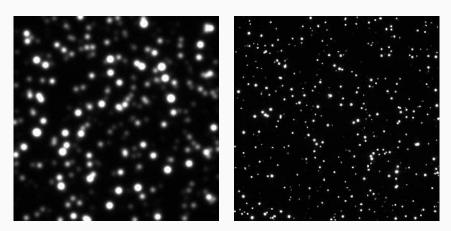


Figure 7: Examples of simulated images using Skymaker

Image preprocessing

• High dynamic inputs disturb neural network convergence

•
$$I' = \begin{cases} log(1+u) & \text{if } u > 0 \\ -log(1-u) & \text{if } u < 0 \end{cases}$$
 where $u = \frac{I-I_0}{k\sigma_{I}-I_0}$

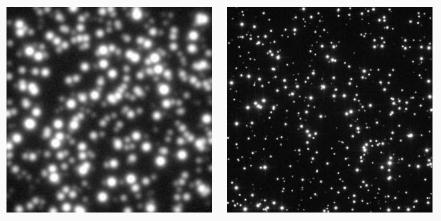


Figure 8: Preprocessed images

How to detect (blended) sources?

 Neural network designed to find a mask where non-zero values are sources centroids

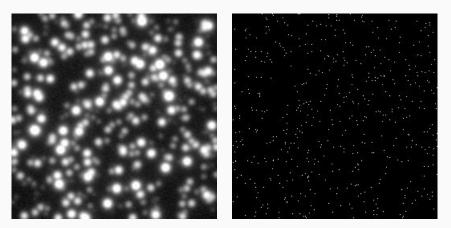


Figure 9: Example of input/output for the neural network

Model architecture

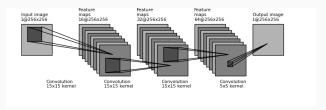


Figure 10: Neural network architecture for deblending

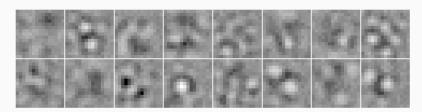


Figure 11: First convolutional layer kernels after training

Results

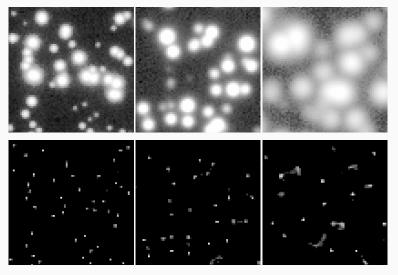


Figure 12: Example of 3 input/output results

Performance

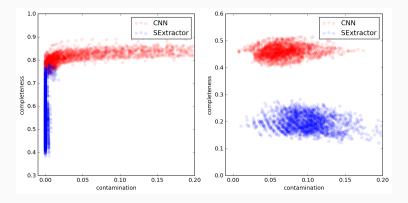


Figure 13: Completeness vs contamination for different detection thresholds. Blue: SExtractor, Red: CNN. Left: good seeing (0.1 arcsec), Right: bad seeing (1.5 arcsec)

First approach competitive with the state of the art

Future prospects

- LAB/CNES PhD: Robust detection of astronomical sources using convolutional neural networks
 - ightarrow Universal method and Robustness regarding contaminants (SExtractor-minded)
- Euclid: probe dark matter, dark energy and the expanding universe
 - Precise shear measurements
 - Wide and deep fields observations
 - Multi-channel detection (visible and infrared)
- Cosmic-DANCe: identify all members of young solar neighborhood
 - Precise astrometry in nearby clusters
 - Combine different observations with various features
 - Multi-channel detection (visible and near-infrared)
- Include a CNN-based detection module in SExtractor++
 - Developed by Euclid members
 - ISDC, Geneva
 - USM, Munich
 - · CNES, Toulouse