Combining ground- and space-based photometric surveys for deblending and shear measurement

CYRILLE DOUX

Université Paris Diderot Laboratoire AstroParticule et Cosmologie

Workshop Deblending with Deep Learning, FACe, June 28th, 2017

PARIS DIDEROT

 $\widehat{R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu}} = \frac{8\pi G}{c^4} T_{\mu\nu}$ stuff geometry DM

HENCE matter bends light rays

Cyrille Doux Space × ground shear measurement and deblending

Cyrille Doux Space × ground shear measurement and deblending

REASONS WHY IT'S HARD

The Forward Process.

Galaxies: Intrinsic galaxy shapes to measured image:

Intrinsic galaxy (shape unknown)

Gravitational lensing causes a **shear (g)**

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

Stars: Point sources to star images:

Bridle+09

→ **IDEA** : same galaxy observed with different **PSFs** (no atmosphere in space!) and **color** filters

REASONS WHY IT'S HARD

Raw data from CFH12K, from Schneider, P., Kochanek, C. & Wambsganss, J. Gravitational Lensing: Strong, Weak and Micro.

REASONS WHY IT'S HARD

LSST IN A NUTSHELL

- A few numbers
 - 10 years of observations ~2022-2032
 - 15s exposures of wide field (1°), observed 1000 times, 1/3 of the sky
 - 9 Gpx camera, 100 PB of raw data
 - 30 000 000 000 objects detected (stars, galaxies, transients)
- Scientific goals include:
 - dark energy : tomographic shear+clustering measurement
 - transients (SNIa, asteroids, *etc*)
 - clusters and IGM physics
 - strong lensing

• • •

Mar. 17, 2017

WHAT WILL LSST DATA LOOK LIKE?

A lot like HSC data (<u>hsc-release.mtk.nao.ac.jp/hscMap2/</u>)!

WHAT WILL LSST DATA LOOK LIKE?

A lot like HSC data (<u>hsc-release.mtk.nao.ac.jp/hscMap2/</u>)!

WHAT WILL LSST DATA LOOK LIKE?

A lot like HSC data (<u>hsc-release.mtk.nao.ac.jp/hscMap2/</u>)!

Cyrille Doux Space × ground shear measurement and deblending

THE DEBLENDING PROBLEM

- Is it an issue ?
 - Yes !
 - *deep* survey: maybe up to 40% of blended objects (so says R. Lupton !)
 - depends on your definition of "blended"

Why?

- it affects all measurements :
 - fluxes of extended objects per band > colors > redshift
 - shapes > cosmic shear
 - morphology

Cyrille Doux Space × ground shear measurement and deblending

WHAT CAN YOU DO ABOUT IT?

- Use colors (ugrizy bands)
- ► Use space observations (Euclid, WFIRST !) ⇒ diffraction-limited PSF
- Learn what real galaxies look like vs symmetries

→ neural networks can do that very well!

Ground : HSC

Space : HST

WHAT CAN YOU DO ABOUT IT?

- Use colors (ugrizy bands)
- ► Use space observations (Euclid, WFIRST !) ⇒ diffraction-limited PSF
- Learn what real galaxies look like vs symmetries

→ neural networks can do that very well!

Ground : HSC

Space : HST

GENERATING REALISTIC GALAXY IMAGES

→ learn what real galaxies look like : (conditional) variational auto encoders

Code regularisation

Reconstruction error ©François Lanusse

 \rightarrow draw z~ $\mathcal{N}(0,1)$ to produce new realistic images

DEBLENDING GALAXIES

- deep neural networks to perform deblending
 - adapted VAE-type networks ? preliminary work : monochromatic, shape only
 - hierarchical networks using pre-trained encoders?
 - use latent variables encoding shear ?

input (blended) desired output (deblended)

output (deblended)

Mar. 17, 2017

THE CASE FOR GROUND & SPACE

THE CASE FOR GROUND & SPACE

ASKING THE GOOD QUESTIONS

- Deblending is a *necessity*, not a *purpose*
- Scientific goal(s) sets the deblending score
 - shape

cosmic shear needs both!

morphology

colors/redshift

- ?
- How to proceed ?
 - define the question: what task should NN learn?
 - do you care about single objects ? or statistical measurements ?
 - where can they outperform good ol' algorithmic? see Alpha Go
 - build a test data base (COSMOS field?)
 - test algorithms for different scores (RAMP ?)