
JSkyMap
Map making for transit

interferometers

R. Ansari &
C. Magneville , J.E. Campagne

& J. Zhang
July 2017

1Thursday 6 July 17

• Reconstruct map from cleaned/calibrated visibilities

• Can handle data from dish arrays or cylinders, in transit mode

• Array geometry and feed/antenna beam should be known

• Can compute visibilities given an input sky map and set of baselines

• Written in C++, with parallel, multi-thread capability, over a single
node, with mutiple CPU’s or cores

• Computation of beams in (l,m) space in parallel

• Map reconstruction for different m-modes in parallel

• Can be used as a tool for the calibration stages

• Independent processing of different frequencies (can be handled in
parallel on different nodes)

JSkyMap : Map making software (I)
(J. Zhang PhD)

J. Zhang, R. Ansari, MNRAS 461, (2016) - arXiv:1606.03090
2Thursday 6 July 17

• Do not yet handle polarisation, but extension is rather easy

• Except for the computation of polarised beam responses…

• The code is rather simple, built around few classes, but relies on the
SOPHYA class library (http://www.sophya.org)

• Main classes used in JSkyMap :

• BeamTP , BeamLM and BeamVis

• SphCoordTrans , PseudoInverse<T>

• JSphSkyMap

• JSkyMap and BeamUV for planar geometry

• Some utility functions

JSkyMap : Map making software (II)
(J. Zhang PhD)

GIT repo: https://gitlab.in2p3.fr/SCosmoTools/JSkyMap

3Thursday 6 July 17

http://www.sophya.org
http://www.sophya.org
https://gitlab.in2p3.fr/SCosmoTools/JSkyMap
https://gitlab.in2p3.fr/SCosmoTools/JSkyMap

JSphSkyMap class

JSphSkyMap(int lmax=512, int m=256);

/* ==== compute visibilities in spherical geometry
 -Input : Input sky map
 BeamLM list
 lmax (optional, if zero, use the value already in the class)
 -Output : The visibility matrix, with X-index corresponding to m-modes (0<=m<=SizeX())
 and Y-index corresponding to the beams (SizeY() = 2*beams.size())
 the factor two comes from the fact that visibilities for positive and negative m-modes
 are written as two separate rows of the array */

TArray< complex<double> > ComputeVisibilities(
 SphereHEALPix<double> const& inmap,
 vector< BeamLM > const& beams, int lmax=0);

/* ==== reconstructing map from a single set of visibilities
 -Input :
 visarr : one array of m-mode visibilities
 beams: list of beams
 wnoisecov == true , use the noise covariance matrix when inverting the A matrix to extract alm
 compcovar == true : Compute the error covariance matrix on estimated stky alm and save it to the PPF file
 compainva == true ; save A, Ainv Ainv * A matrices
 nthreads : nb of computing threads
 -Output :
 the returned JSphSkyMap object */

JSphSkyMap ReconstructFromVisibilityArray(
 TArray<complex<double> > & visarr,
 vector< BeamLM > const& beams,
! bool wnoisecov, bool compcovar, bool compainva, int nthreads=1);

Computing visibility array from an input map

Computing map from a visibility array

4Thursday 6 July 17

JSkyMap : some utiliy
programs

 ------ map2vis.cc : Computing Visibility array from an input map and a set of
baselines -------
 map2vis/usage: map2vis InMapPPF_File OutPPF_File elevation baseline1 [baseline2
baseline3 ...]
 o elevation : elevation angle in degree (offset with respect to zenith in NS plane,
+ toward N
 o baselineS : baselineX,baselineY,baselineZ

 ------ vis2map.cc : reconstructing map from a set of visibility arrays -------
 vis2map/usage: vis2map OutputMapPPF elevations VisiPPF1 [VisiPPF2 ...]
 o elevations : comma separated elevation angle values in degree
 (NS plane, + toward N)
 o VisiPPFS : Input visibility arrays

Computing visibility array from an input map (map2vis.cc)

Computing map from a visibility array (vis2map.cc)

5Thursday 6 July 17

168 APPENDIX B. MAP MAKING SOFTWARE

Instrument)configura/on)
Scan)strategy))

single)dish)response�

Input)Sky)map))
Instrument)noise�

Create)�

Compute�

Compute))))�

Filtering)and)Masking)in)))))))))))))))plane)�

Inverse)Spherical)Harmonics)Transform)to)get)))

Compute)
)
)
)
�

Figure B.0.1: Block Diagram for the map-reconstruction code

- The template class PseudoInverse provides the specific services to handle the compu-
tation of Bm matrices and the noise covariance matrices.

- Utility classes and function to handle the computation of the set of baselines from the an-
tenna positions in an array.

- The JSphSkyMap is the main class in the reconstruction code. It computes the Am and
Bm matrices, starting from a set of beams in the (`, m) plane corresponding to an instrument
layout and sky scanning strategy. It provides also methods to computes mock visibility data,
given an input sky, as well as methods to reconstruct the sky from visibilities. This class
implements parallelism at the level of Am and Bm matrices for different `.

The overall functional structure of the JSkyMap code is shown in Fig.B.0.1. The major com-
putation steps are listed below:

1. We compute first the baselines from the array configuration, i.e. the coordinates of the array
elements. To simplify numerical handling, we replace redundant baselines by a single beam,
scaling the noise level accordingly / 1/nrb, where nrb is the number of antenna pairs with
the exact same baseline.

2. We compute then the beams in the (`, m) plane from the baselines and scan strategy (the
observed declinations on sky). As the beam computation involves Spherical Harmonics
Transform (SHT) which is computation intensive, multi-threaded computation has been im-
plemented for this step.

JSkyMap : Map making software (III)
3.7. EXTENSION TO POLARISATION 71

Then,

Vp
i

p
j

=
X

m`

(�1)m
⇣

LI
p

i

p
j

;`,�mI`m + LE
p

i

p
j

;l,�mE`m

+LB
p

i

p
j

;l,�mB`m + LV
p

i

p
j

;l,�mV`m

⌘

(3.7.9)

As all Stokes parameters are real functions then Ū⇤(~!) = Q̄(~!) and this leads the relation in
harmonic space Q̄`m = (�1)mŪ⇤

l,�m and to relations which extend the case of I`m as

Xl,�m = (�1)m X⇤
`m X 2 {I, E , B, V} (3.7.10)

So, one can extend both the Fourier decomposition Eq. (3.4.11) as well as the positive and
negative m-mode separation Eqs. (3.4.12), (3.4.13).

Ṽp
i

p
j

(m) =

+`
max

X

`=|m|

X

X
(�1)mLX

p
i

p
j

;l,�mX`m (3.7.11)

Ṽ⇤
p

i

p
j

(�m) =

+`
max

X

`=|m|

X

X
LX⇤

p
i

p
j

;l,mX`m (3.7.12)

with X = I, E , B, V .
Extending our map making software to perform computation for the polarised case would be

rather straightforward, except maybe for the computation of the polarised beams
n

LI
p

i

p
j

, LQ
p

i

p
j

, LU
p

i

p
j

, LV
p

i

p
j

o

,
from individual feed polarised beam responses. The implementation of the extension is postponed
to future work.

60 CHAPTER 3. MAP MAKING FOR TRANSIT INTERFEROMETERS

We recognise the expression as a Fourier transform for the periodic function Vij(↵p); as the feed
response vanishes for large enough ` (Lij(`, m) ! 0 for ` > `max), we can write the following
relation satisfied by the visibility Fourier coefficients Ṽij(m), computed from a set a regularly time
sampled visibility measurements.

Ṽij(m) =

+`
max

X

`=|m|

(�1)m I(`, m)Lij(`, �m) (3.4.11)

The m-mode of the visibility for both positive and negative m (±m) is given by sky spherical
harmonics coefficients of the same m,

Ṽij(m) =

+`
max

X

`=|m|

(�1)m I(`, m)Lij(`, �m) (3.4.12)

Ṽ⇤
ij(�m) =

+`
max

X

`=|m|

I(`, m)L⇤
ij(`, m) (3.4.13)

The full linear system of Eq. (3.4.3) can thus be decomposed into a set of much smaller (103⇥103)
independent linear system, one for each m, with mmax = `max. The beam matrix L has indeed a
block diagonal structure in the harmonic space, which is schematically shown in Fig.3.4.1. Group-
ing all array baselines together in a vector, and taking into account the noise contribution, the
visibility measurement equation in the Fourier space can be written in matrix form as:

h

Ṽ
i

m
= Lm ⇥ [I(`)]m + [ñ]m (3.4.14)

The sky spherical harmonics coefficient for a given m and for m ` `max are grouped in the sky
vector [I(`)]m. We will consider only positive m values (0 m `max) for the linear systems
defined above, the two visibility measurements for ±m of equations 3.4.12 and 3.4.13 will be
represented by two rows of the matrix Lm. This matrix will thus have `max columns and 2⇥nbeams

rows. The total number of beams nbeams will be more precisely defined in the next paragraph.
The [ñ]m represent the noise contribution vector to the m-mode visibilities, corresponding to the
Fourier transform of time domain noise.

For dish arrays, the instantaneous field of view is a small fraction of the whole sky, and a cir-
cular strip of sky along one of the latitude line can be obtained by carrying out transit observation
for 24 sidereal hours continuously. By changing the elevation angle of the dish pointing, strips
with different central declination can be obtained. For dish arrays, the effective number of beams
would be equal to the number of different baselines times the number of constant elevation scans,

nbeams = Nb ⇥ n�
p

.

The beam for an antennae pair ij making constant elevation drift scan observation with declination

60 CHAPTER 3. MAP MAKING FOR TRANSIT INTERFEROMETERS

We recognise the expression as a Fourier transform for the periodic function Vij(↵p); as the feed
response vanishes for large enough ` (Lij(`, m) ! 0 for ` > `max), we can write the following
relation satisfied by the visibility Fourier coefficients Ṽij(m), computed from a set a regularly time
sampled visibility measurements.

Ṽij(m) =

+`
max

X

`=|m|

(�1)m I(`, m)Lij(`, �m) (3.4.11)

The m-mode of the visibility for both positive and negative m (±m) is given by sky spherical
harmonics coefficients of the same m,

Ṽij(m) =

+`
max

X

`=|m|

(�1)m I(`, m)Lij(`, �m) (3.4.12)

Ṽ⇤
ij(�m) =

+`
max

X

`=|m|

I(`, m)L⇤
ij(`, m) (3.4.13)

The full linear system of Eq. (3.4.3) can thus be decomposed into a set of much smaller (103⇥103)
independent linear system, one for each m, with mmax = `max. The beam matrix L has indeed a
block diagonal structure in the harmonic space, which is schematically shown in Fig.3.4.1. Group-
ing all array baselines together in a vector, and taking into account the noise contribution, the
visibility measurement equation in the Fourier space can be written in matrix form as:

h

Ṽ
i

m
= Lm ⇥ [I(`)]m + [ñ]m (3.4.14)

The sky spherical harmonics coefficient for a given m and for m ` `max are grouped in the sky
vector [I(`)]m. We will consider only positive m values (0 m `max) for the linear systems
defined above, the two visibility measurements for ±m of equations 3.4.12 and 3.4.13 will be
represented by two rows of the matrix Lm. This matrix will thus have `max columns and 2⇥nbeams

rows. The total number of beams nbeams will be more precisely defined in the next paragraph.
The [ñ]m represent the noise contribution vector to the m-mode visibilities, corresponding to the
Fourier transform of time domain noise.

For dish arrays, the instantaneous field of view is a small fraction of the whole sky, and a cir-
cular strip of sky along one of the latitude line can be obtained by carrying out transit observation
for 24 sidereal hours continuously. By changing the elevation angle of the dish pointing, strips
with different central declination can be obtained. For dish arrays, the effective number of beams
would be equal to the number of different baselines times the number of constant elevation scans,

nbeams = Nb ⇥ n�
p

.

The beam for an antennae pair ij making constant elevation drift scan observation with declination

Non polarised

3.7. EXTENSION TO POLARISATION 69

00 200200 400400 600600 800800 10001000

00

0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

0.80.8

0.90.9

11

weight functionweight function

black with cross & red : PAON4; blue: Tianlai dish arrayblack with cross & red : PAON4; blue: Tianlai dish array

Figure 3.6.2: Weight function W (`) applied to computed \I(`, m). The black curve suit for PAON4
with autocorrelation, while the red curve suit for PAON4 without autocorrelation. The blue curve
is for Tianlai dish array without autocorrelation.

each antenna is equipped with dual polarisation receivers, measuring two orthogonal linear polar-
isations (x̂, ŷ) of the incoming electromagnetic field [18], for example a component x̂ parallel to
the horizontal plane ŷ parallel to the meridian plane. The measured electric signal for each polar-
isation is a combination of the corresponding projection of the electric field contributions coming
from different and incoherent directions of the sky. The polarization state of electromagnetic
waves is often described using a 4-element column vector corresponding to the Stokes parameters
S = (I, Q, U, V)T where superscript T denotes the matrix transpose. If ex and ey denotes the two
electric field components transverse to the line of sight, one gets

I = hexe⇤
xi + heye

⇤
yi Q = hexe⇤

xi � heye
⇤
yi

U = hexe⇤
yi + heye

⇤
xi V = �i(hexe⇤

yi � heye
⇤
xi) (3.7.1)

where the hi denotes a time average, and we have omitted the direction (~!) dependence for sim-
plicity. The visibilities Vp

i

,p
j

have to be computed for all signal pairs, (pi, pj) indices identifying
the antenna pair (i, j), as well as the polarisation probe x or y. The full set of visibilities Vp

i

,p
j

can be split in two sets: x and y polarisations auto and cross correlations Vxx
ij , Vyy

ij and cross po-
larisation visibilities Vxy

ij , Vyx
ij . For an array with N dual polarisation receivers, there will be a

total of 2N2 visibilities, corresponding to 2N autocorrelations for the x and y polarisation sig-
nals, N (N�1)

2 cross correlations visibilities for each of xx and yy polarisation signal pairs, and N2

2
visibilities for each of the cross polarisation xy and yx pairs.

Vp
i

,p
j

=
h

Vxx
ij ; Vyy

ij ; Vxy
ij ; Vyx

ij

i

(3.7.2)

pi = {(i, x), (i, y)} pj = {(j, x), (j, y)} (3.7.3)

3.7. EXTENSION TO POLARISATION 69

00 200200 400400 600600 800800 10001000

00

0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

0.80.8

0.90.9

11

weight functionweight function

black with cross & red : PAON4; blue: Tianlai dish arrayblack with cross & red : PAON4; blue: Tianlai dish array

Figure 3.6.2: Weight function W (`) applied to computed \I(`, m). The black curve suit for PAON4
with autocorrelation, while the red curve suit for PAON4 without autocorrelation. The blue curve
is for Tianlai dish array without autocorrelation.

each antenna is equipped with dual polarisation receivers, measuring two orthogonal linear polar-
isations (x̂, ŷ) of the incoming electromagnetic field [18], for example a component x̂ parallel to
the horizontal plane ŷ parallel to the meridian plane. The measured electric signal for each polar-
isation is a combination of the corresponding projection of the electric field contributions coming
from different and incoherent directions of the sky. The polarization state of electromagnetic
waves is often described using a 4-element column vector corresponding to the Stokes parameters
S = (I, Q, U, V)T where superscript T denotes the matrix transpose. If ex and ey denotes the two
electric field components transverse to the line of sight, one gets

I = hexe⇤
xi + heye

⇤
yi Q = hexe⇤

xi � heye
⇤
yi

U = hexe⇤
yi + heye

⇤
xi V = �i(hexe⇤

yi � heye
⇤
xi) (3.7.1)

where the hi denotes a time average, and we have omitted the direction (~!) dependence for sim-
plicity. The visibilities Vp

i

,p
j

have to be computed for all signal pairs, (pi, pj) indices identifying
the antenna pair (i, j), as well as the polarisation probe x or y. The full set of visibilities Vp

i

,p
j

can be split in two sets: x and y polarisations auto and cross correlations Vxx
ij , Vyy

ij and cross po-
larisation visibilities Vxy

ij , Vyx
ij . For an array with N dual polarisation receivers, there will be a

total of 2N2 visibilities, corresponding to 2N autocorrelations for the x and y polarisation sig-
nals, N (N�1)

2 cross correlations visibilities for each of xx and yy polarisation signal pairs, and N2

2
visibilities for each of the cross polarisation xy and yx pairs.

Vp
i

,p
j

=
h

Vxx
ij ; Vyy

ij ; Vxy
ij ; Vyx

ij

i

(3.7.2)

pi = {(i, x), (i, y)} pj = {(j, x), (j, y)} (3.7.3)

3.7. EXTENSION TO POLARISATION 71

Then,

Vp
i

p
j

=
X

m`

(�1)m
⇣

LI
p

i

p
j

;`,�mI`m + LE
p

i

p
j

;l,�mE`m

+LB
p

i

p
j

;l,�mB`m + LV
p

i

p
j

;l,�mV`m

⌘

(3.7.9)

As all Stokes parameters are real functions then Ū⇤(~!) = Q̄(~!) and this leads the relation in
harmonic space Q̄`m = (�1)mŪ⇤

l,�m and to relations which extend the case of I`m as

Xl,�m = (�1)m X⇤
`m X 2 {I, E , B, V} (3.7.10)

So, one can extend both the Fourier decomposition Eq. (3.4.11) as well as the positive and
negative m-mode separation Eqs. (3.4.12), (3.4.13).

Ṽp
i

p
j

(m) =

+`
max

X

`=|m|

X

X
(�1)mLX

p
i

p
j

;l,�mX`m (3.7.11)

Ṽ⇤
p

i

p
j

(�m) =

+`
max

X

`=|m|

X

X
LX⇤

p
i

p
j

;l,mX`m (3.7.12)

with X = I, E , B, V .
Extending our map making software to perform computation for the polarised case would be

rather straightforward, except maybe for the computation of the polarised beams
n

LI
p

i

p
j

, LQ
p

i

p
j

, LU
p

i

p
j

, LV
p

i

p
j

o

,
from individual feed polarised beam responses. The implementation of the extension is postponed
to future work.

Polarised

6Thursday 6 July 17

JSkyMap : Visibility array
organisation

Vij(ra)
ra

b
e
a
m
s mm= 0 1 2 …

+m
-m
+m
-m
+m
-m
+m
-m

b
e
a
m
s

Vij(m)

7Thursday 6 July 17

SOPHYA
a C++ class library for
intensive data analysis

and scientific computing

http://www.sophya.org

https://gitlab.in2p3.fr/SOPHYA

8Thursday 6 July 17

http://www.sophya.org
http://www.sophya.org
http://livepage.apple.com/
http://livepage.apple.com/
https://gitlab.in2p3.fr/SOPHYA
https://gitlab.in2p3.fr/SOPHYA
https://gitlab.in2p3.fr/SOPHYA
https://gitlab.in2p3.fr/SOPHYA

