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Motivations

» Need of a general and efficient method for dynamically
allocating grid resources to optimize the satisfaction of both
end-users and participating institutions.

» Differentiated QoS must be possible: Interactive and Batch
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High level objectives driven scheduling

» Overhead minimization:

Time spent in the system — Execution time

Execution time

» Fairshare constraint: difference between allocated
resources, wg, and actually used resources, S, for each group
of users, k, also called Virtual Organizations (VO).

argmax (wy — Sk)+
k

1—
argmax (wy)
k
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Previous approches

» Greedy policies': Unable to ensure trade-off between several
objectives in the long term.

» Queueing models?: Complex queueing model may be
required to obtain good performances in real grid systems that
are dynamic and non-steady.

1E.D. Jensen, 1985, A time driven scheduling model for real-time
operating systems

2R.Doyle and al, 2003, Model-based resource provisioning in a web
service utility
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Proposed methodology

» Scheduling considered as a Continuous Markov Decision
Process.

» The goal is to find a stationary policy that chooses the
action to take in each state which maximizes the long-term
expectation of utility.

» State: a set of real variables measured in the grid.

» Action: each job waiting to be scheduled.

» Rewards: utility functions that allow the users and the
system administrators to configure the priority between
jobs.

» Use of a feed-forward back propagated neural net to regress
Q via SARSA algorithm.
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Experiments

» Synthetic case, theoretical traffic simulation: 40 machines,
5000 jobs.

> Realistic case, simulated activity extracted from EGEE logs
of April 2006: 110 machines, 5000 jobs.

» 2 types of utility function.
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Time utility functions
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Figure: Example of Time Utility function used by the jobs
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Synthetic case

» Jobs:

» Poisson distribution of inter-arrival times.
» Exponential distribution of service times.
» 4 VOs (70%, 20%, 5%, 5%)

» Utilities: Fairshare and Overhead.

» Methodologies: RL and FIFO.
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Synthetic case, details of overhead measures (1/2)
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(b) RL-based batch jobs
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Synthetic case, details of overhead measures (2/2)
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Summary of synthetic case, overhead
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Summary of synthetic case, fairshare
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EGEE case

» Jobs: extracted from Torque logs of the LAL.
» 7VOs

» Fairshare objective : (20%, 12%, 12%, 6%, 6%, 9%, 35%)
» VO distribution : (72%, 7%, 5%. 2% , 1% , 4%, 9%)
» Utilities: Fairshare and Overhead.

» Schedulers: RL and EGEE's gl.ite.
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EGEE case, details of overhead measures (1/2)
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(f) RL-based batch jobs



EGEE case, details of overhead measures (2/2)
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Summary of EGEE case, overhead
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Summary of EGEE case, fairshare
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Perspectives

Grid perspectives

» Improving grid state description

» Implementation in a grid infrastructure

Learning perspectives

» New generalization algorithms:

» Deep Belief Network
» Echo State Machine

» Multi-objective reinforcement learning

» Distributed reinforcement learning
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