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Motivations

I Need of a general and efficient method for dynamically
allocating grid resources to optimize the satisfaction of both
end-users and participating institutions.

I Differentiated QoS must be possible: Interactive and Batch
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High level objectives driven scheduling

I Overhead minimization:

Time spent in the system − Execution time

Execution time

I Fairshare constraint: difference between allocated
resources, wk , and actually used resources, Sk , for each group
of users, k , also called Virtual Organizations (VO).

1−
argmax

k
(wk − Sk)+

argmax
k

(wk)
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Previous approches

I Greedy policies1: Unable to ensure trade-off between several
objectives in the long term.

I Queueing models2: Complex queueing model may be
required to obtain good performances in real grid systems that
are dynamic and non-steady.

1E.D. Jensen, 1985, A time driven scheduling model for real-time
operating systems

2R.Doyle and al, 2003,Model-based resource provisioning in a web
service utility



6/19

Proposed methodology

I Scheduling considered as a Continuous Markov Decision
Process.

I The goal is to find a stationary policy that chooses the
action to take in each state which maximizes the long-term
expectation of utility.

I State: a set of real variables measured in the grid.
I Action: each job waiting to be scheduled.
I Rewards: utility functions that allow the users and the

system administrators to configure the priority between
jobs.

I Use of a feed-forward back propagated neural net to regress
Q via SARSA algorithm.
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Experiments

I Synthetic case, theoretical traffic simulation: 40 machines,
5000 jobs.

I Realistic case, simulated activity extracted from EGEE logs
of April 2006: 110 machines, 5000 jobs.

I 2 types of utility function.
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Time utility functions

Figure: Example of Time Utility function used by the jobs
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Synthetic case

I Jobs:
I Poisson distribution of inter-arrival times.
I Exponential distribution of service times.
I 4 VOs (70%, 20%, 5%, 5%)

I Utilities: Fairshare and Overhead.

I Methodologies: RL and FIFO.
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Synthetic case, details of overhead measures (1/2)
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(a) FIFO batch jobs
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(b) RL-based batch jobs
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Synthetic case, details of overhead measures (2/2)

0 0.5 1 1.5 2

x 10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Time

Re
lati

ve 
Ov

erh
ead

mean : 7.97
σ : 46.34

(c) FIFO interactive jobs
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(d) RL-based interactive jobs
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Summary of synthetic case, overhead
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Summary of synthetic case, fairshare
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EGEE case

I Jobs: extracted from Torque logs of the LAL.
I 7 VOs
I Fairshare objective : (20%, 12%, 12%, 6%, 6%, 9%, 35%)
I VO distribution : (72%, 7%, 5%, 2% , 1% , 4%, 9%)

I Utilities: Fairshare and Overhead.

I Schedulers: RL and EGEE’s gLite.
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EGEE case, details of overhead measures (1/2)
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(e) EGEE batch jobs
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(f) RL-based batch jobs
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EGEE case, details of overhead measures (2/2)
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(g) EGEE interactive jobs
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(h) RL-based interactive jobs



17/19

Summary of EGEE case, overhead
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Summary of EGEE case, fairshare
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Perspectives

Grid perspectives

I Improving grid state description

I Implementation in a grid infrastructure

Learning perspectives

I New generalization algorithms:
I Deep Belief Network
I Echo State Machine

I Multi-objective reinforcement learning

I Distributed reinforcement learning
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