Recent Improvements of NMHDECAY

U. Ellwanger, LPT Orsay

The NMSSM:

Recall the problems of the MSSM:
a) μ-problem: Why is μ (so precisely) of the order of the weak scale $\sim M_{\text {Susy }}$?
b) little fine-tuning problem: Why has no Higgs been observed at the LHC?
\longrightarrow Add a Singlet S:
In the superpotential: $\mu H_{u} H_{d} \rightarrow \lambda S H_{u} H_{d}+\frac{\kappa}{3} S^{3}$
New soft terms: $\lambda A_{\lambda} S H_{u} H_{d}+\frac{\kappa}{3} A_{\kappa} S^{3}+m_{S}^{2} S^{2}$
$\longrightarrow\langle S\rangle \sim M_{\text {Susy }}$ naturally, generates $\mu_{\text {eff }}=\lambda\langle S\rangle \sim M_{\text {Susy }}$ (See the first Susy/Sugra extensions of the SM by Fayet, Nilles, Srednicki, Wyler,...)
\longrightarrow The μ-problem is solved, the NMSSM is the simplest Susy extension of the standard model where the weak scale originates from $M_{\text {Susy }}$ only (scale invariant superpotential)

Parameter space:

MSSM: $m_{H_{u}}^{2}+\mu^{2}, m_{H_{d}}^{2}+\mu^{2}, B \longrightarrow M_{Z}, \tan \beta, \mu\left(\right.$ or $\left.M_{A}\right)$ (+ soft terms in the squark/slepton/gaugino sectors)

NMSSM: $m_{H_{u}}^{2}, m_{H_{d}}^{2}, m_{S}^{2}, \lambda, \kappa, A_{\lambda}, A_{\kappa} \longrightarrow$

$$
M_{Z}, \tan \beta, \mu_{e f f}, \lambda, \kappa, A_{\lambda}, A_{\kappa}
$$

(+ soft terms in the squark/slepton/gaugino sectors)

Physical Higgs states:

3 CP even neutral scalars (instead of h, H in the $M S S M$)
2 CP odd neutral scalars (instead of A in the MSSM)
1 charged complex scalar (as in the MSSM)
\longrightarrow The computation of Higgs masses, couplings and branching ratios is (even) more complex than in the MSSM
e.g.: Unconventional Higgs \rightarrow Higgs decays as $h \rightarrow A A$ are possible, compatible with LEPII constraints for $M_{h} \lesssim 90 \mathrm{GeV}$!
(\rightarrow less fine tuning in this region of parameter space)

The computation of Higgs masses, couplings and branching ratios

 as functions of $\tan \beta, \mu_{e f f}, \lambda, \kappa, A_{\lambda}, A_{\kappa}$ (+ soft terms in the squark/slepton/gaugino sectors) is performed in the public code
NMHDECAY

(U.E., J. Gunion, C. Hugonie)

+ check for theoretical constraints:
- absolute minimum of the scalar potential?
- Landau singularity below $M_{G U T}$ for λ, κ, h_{t} ?
+ experimental constraints:
- from Higgs searches at LEPII (incl. unconventional channels specific to the NMSSM)
- on sparticle masses/couplings

Present precision in the lightest Higgs mass
($\sim g^{2} v^{2}$ at tree level):
Included radiative corrections are of the orders
$h_{t / b}^{4}$ (exact), $h_{t / b}^{6}$ (LLA), $\alpha_{s} h_{t / b}^{4}$ (LLA), $g^{2} h_{t / b}^{2}$ (exact) ${ }^{*}$, $g^{4}, g^{2} \lambda^{2 *}, g^{2} \kappa^{2 *}, \lambda^{4 *}, \kappa^{4 *}, \lambda^{2} \kappa^{2 *}($ all LLA $)$
*: New in version 2.0

Additional new features in the version 2.0 of NMHDECAY:

- all squark, slepton and gaugino masses and mixings (incl. rad. corrs. $\sim \alpha_{s}$ to pole masses, with thanks to S. Kraml)
- branching ratios $H \rightarrow$ squarks, sleptons for all 6 Higgs states (+ squark/slepton loop contributions to $H \rightarrow \mathrm{gg} / \gamma \gamma)$
- LEP/Tevatron constraints on all squark/slepton/gaugino masses
- $B R(b \rightarrow s \gamma)$ to lowest order
- Link to a NMSSM version of MicrOMEGAs (if desired) \rightarrow Dark matter relic density Ω

Still: NMHDECAY is fast ($\sim 10^{3}$ pts. in parameter space/sec without Ω, but only ~ 10 pts. $/ \mathrm{sec}$ with Ω)
\longrightarrow Large scans are feasable
Also:

- Input/output in SLHA format possible
- For $\lambda \sim \kappa \sim 10^{-6}$: application to the MSSM (incl. exp. constraints!)

To come:

- integrate RGEs for all soft terms up to $M_{G U T}$ (computation of the NMSSM specific threshold corrections under way)
- better precision of $B R(b \rightarrow s \gamma)$ (required for large $\tan \beta$)
- constraints from myon anomalous magnetic moment
- more rad. corrs. in $V_{e f f}$ (Higgs)

Conclusions:

Why the NMSSM should be studied as thoroughly as the MSSM:
\longrightarrow The Susy extension of the SM via the NMSSM is theoretically at least as attractive as the MSSM:

- less finetuning required
- μ-problem solved
\longrightarrow All the "goodies" of the MSSM are maintained:
- gauge coupling unification
- dark matter relic density from the lightest neutralino (\rightarrow G. Belanger et al.)
- $m_{h_{n}}^{2}\left(M_{\text {Weak }}\right)<0$ naturally from large h_{t}
- agreement with all present constraints on "physics beyond the SM" is possible
\longrightarrow New Physics beyond the MSSM: Higgs detection at the LHC may be (but not necessarily) difficult
(U.E., J. Gunion, C. Hugonie, JHEP 0507:041,2005):
- $\sim 300 \mathrm{fb}^{-1}$ may be required
- if h decays dominantly into $a_{1} a_{1}$:

Possibly no Higgs signal at the LHC!!!
\longrightarrow If a Higgs (+ sparticles?) is found at the LHC: still a LC is required in order to disentangle the MSSM from the NMSSM!
\longrightarrow NMHDECAY is a useful tool for such studies...

