Recent Improvements of NMHDECAY

U. Ellwanger, LPT Orsay

The NMSSM:

Recall the problems of the MSSM:

- a) μ -problem: Why is μ (so precisely) of the order of the weak scale $\sim M_{Susy}$?
- b) little fine-tuning problem: Why has no Higgs been observed at the LHC?

 \rightarrow Add a Singlet S:

In the superpotential: $\mu H_u H_d \rightarrow \lambda S H_u H_d + \frac{\kappa}{3} S^3$

New soft terms: $\lambda A_{\lambda}SH_{u}H_{d} + \frac{\kappa}{3}A_{\kappa}S^{3} + m_{S}^{2}S^{2}$

 $\rightarrow \langle S \rangle \sim M_{Susy}$ naturally, generates $\mu_{eff} = \lambda \langle S \rangle \sim M_{Susy}$ (See the first Susy/Sugra extensions of the SM by Fayet, Nilles, Srednicki, Wyler,...)

 \rightarrow The μ -problem is solved, the NMSSM is the simplest Susy extension of the standard model where the weak scale originates from M_{Susy} only (scale invariant superpotential)

Parameter space:

MSSM: $m_{H_u}^2 + \mu^2$, $m_{H_d}^2 + \mu^2$, $B \longrightarrow M_Z$, $tan\beta$, μ (or M_A) (+ soft terms in the squark/slepton/gaugino sectors)

(+ soft terms in the squark/slepton/gaugino sectors)

Physical Higgs states:

3 CP even neutral scalars (instead of h, H in the MSSM)

2 CP odd neutral scalars (instead of A in the MSSM)

1 charged complex scalar (as in the MSSM)

 \rightarrow The computation of Higgs masses, couplings and branching ratios is (even) more complex than in the MSSM

e.g.: Unconventional Higgs \rightarrow Higgs decays as $h \rightarrow AA$ are possible, compatible with LEPII constraints for $M_h \lesssim 90$ GeV!

 $(\rightarrow$ less fine tuning in this region of parameter space)

The computation of Higgs masses, couplings and branching ratios as functions of $tan\beta$, μ_{eff} , λ , κ , A_{λ} , A_{κ} (+ soft terms in the squark/slepton/gaugino sectors) is performed in the public code NMHDECAY

(U.E., J. Gunion, C. Hugonie)

- + check for theoretical constraints:
- absolute minimum of the scalar potential?
- Landau singularity below M_{GUT} for λ , κ , h_t ?
- + experimental constraints:
- from Higgs searches at LEPII (incl. unconventional channels specific to the NMSSM)
- on sparticle masses/couplings

Present precision in the lightest Higgs mass ($\sim g^2 v^2$ at tree level):

Included radiative corrections are of the orders

$$h_{t/b}^4$$
 (exact), $h_{t/b}^6$ (LLA), $\alpha_s h_{t/b}^4$ (LLA), $g^2 h_{t/b}^2$ (exact)*, g^4 , $g^2 \lambda^{2*}$, $g^2 \kappa^{2*}$, λ^{4*} , κ^{4*} , $\lambda^2 \kappa^{2*}$ (all LLA)

*: New in version 2.0

Additional new features in the version 2.0 of NMHDECAY:

– all squark, slepton and gaugino masses and mixings (incl. rad. corrs. $\sim \alpha_s$ to pole masses, with thanks to S. Kraml)

- branching ratios $H \rightarrow$ squarks, sleptons for all 6 Higgs states (+ squark/slepton loop contributions to $H \rightarrow gg/\gamma\gamma$)

– LEP/Tevatron constraints on all squark/slepton/gaugino masses

- $-BR(b \rightarrow s\gamma)$ to lowest order
- Link to a NMSSM version of MicrOMEGAs (if desired) \rightarrow Dark matter relic density Ω

Still: NMHDECAY is fast (~ 10^3 pts. in parameter space/sec without Ω , but only ~ 10 pts./sec with Ω)

 \rightarrow Large scans are feasable

Also:

- Input/output in SLHA format possible

- For $\lambda \sim \kappa \sim 10^{-6}$: application to the MSSM (incl. exp. constraints!)

To come:

- integrate RGEs for all soft terms up to M_{GUT} (computation of the NMSSM specific threshold corrections under way)
- better precision of $BR(b \rightarrow s\gamma)$ (required for large tan β)
- constraints from myon anomalous magnetic moment
- more rad. corrs. in $V_{eff}(Higgs)$

Conclusions:

Why the NMSSM should be studied as thoroughly as the MSSM:

ightarrow The Susy extension of the SM via the NMSSM is theoretically at least as attractive as the MSSM: less finetuning required

- μ -problem solved
- \rightarrow All the "goodies" of the MSSM are maintained:

 - gauge coupling unification
 dark matter relic density from the lightest neutralino (\rightarrow G. Belanger et al.)
 - $-m_{h_u}^2(M_{Weak}) < 0$ naturally from large h_t
 - agreement with all present constraints on
 - "physics beyond the SM" is possible

 \rightarrow New Physics beyond the MSSM: Higgs detection at the LHC may be (but not necessarily) difficult (U.E., J. Gunion, C. Hugonie, JHEP 0507:041,2005): — \sim 300 fb^{-1} may be required

- if h decays dominantly into a_1a_1 :

Possibly no Higgs signal at the LHC!!!

 \rightarrow If a Higgs (+ sparticles?) is found at the LHC: still a LC is required in order to disentangle the MSSM from the NMSSM!

 \rightarrow NMHDECAY is a useful tool for such studies...