WIMPs search with multilayer scintillator modules

Ken-Ichi Fushimi

The Univ. of Tokushima, JAPAN

Contents

- □ Introduction
- □ Merit of segmentation of NaI(Tl)
- □ Performance of thin NaI(Tl)
- □ Purification check of NaI(Tl) powder
- □ Summary & Prospects

Interactions between WIMPs and nucleus

We planned to study all the types of interaction!!

Signal selection by Spatial and Timing Correlation (SSSTC)

□ Signal Selection by Spatial Correlation Signal \rightarrow 57.6keV γ + Low energy recoil Localized event in space and time Background \rightarrow U,Th chain, ⁴⁰K etc. Diffused event in space and time Signal Selection by Timing Correlation ■ Signal \rightarrow No following events \blacksquare Background \rightarrow Time-correlated events by decay chain

Estimation of signal selectivity

- □ Monte Carlo simulation (GEANT4)
- \Box 57.6keV γ ray (¹²⁷I* \rightarrow ¹²⁷I) from one module
- \Box γ is detected the another module
- □ Next module to the emitter module

The fraction which is detected both sides of emitter

Estimation of sensitivity

- Radioactive contamination
 - Uniformly contaminated in NaI(Tl) crystal
 - ²¹⁰Pb 0.1mBq/kg (1/100 of present value)
 - ²¹⁴Pb, ²¹⁴Bi 10µBq/kg (present value)
- Monte Carlo Simulation
 - GEANT4

Condition of Signal Selection by Space and Time Correlation (SSSTC)

□ ²¹⁴Pb,²¹⁴Bi

- SSSTC analysis
- Delayed Coincidence $\Delta T < 1 ms$
- Reduction factor=0.03
- **SSSTC** 1s< Δ T<60min (3 $T_{1/2}$)
- Reduction factor=0.003
- □ ²¹⁰Pb,²¹⁰Bi
 - SSSTC analysis
 - Successive β ray in 12.5 days $(2.5T_{1/2})$
 - Reduction factor=0.177

Expected BG

K.Fushimi et al., JPSJ74(2005)3117 astro-ph/0506329

← SINGLES

Energy window of analysis

Upper limit on BG rate

Calculation of Exclusion plot

- \Box Upper limit on R_{lim} (Experimental result)
- \Box Upper limit on Cross section σ_{lim}
- \Box Local halo density $\rho_0 = 0.3 \text{GeV/cm}^3$
- $\Box \text{ Mean velocity } <v>=230 \text{km/sec}$
- **Target number density** N_T =4.013X10²⁴/kg

Exclusion plot for σ_{EX}

Calculation of limit on $\sigma_{p-\chi}$

Using the relation,

The Upper limit on proton-WIMPs cross section

Calculation of limit on $\sigma_{p-\chi}$

Important parameters

K.Fushimi et al., JPSJ74 (2005) 3117. astro-ph/0506329

Expected sensitivity for WIMPs

Development of thin NaI(Tl)

- Collaboration with Horiba Ltd.
 - Production of thin NaI plate
 - Selection of reflector ESRTM by 3M
- □ ~2004/Feb.
 - Design and production method were discussed
- **2004**/Apr.
 - First single plate was completed!!
- □ 2004/May~
 - Performance, stability test.
- □ 2005/June~

16plates detector and 3plates detector was completed.

Production of thin NaI(Tl) by Horiba Ltd.

Performance of thin NaI(Tl) plate

- □ Dimension of NaI(Tl)
 - 0.05cmX5cmX5cm
- Energy resolution
- Energy threshold
- □ Photon number/keV
- Position selectivity
- Depart PMT : Hamamatsu R329P

K.Fushimi et al., JPSJ 75 (2006) 064201

Energy spectrum of low energy γ rays

Single P.E. energy = 0.35keV

Test experiment in Tokushima

- □ 3-layers NaI(Tl) detector
- One MAPMT
- □ Three SQPMT
- Test started
 - Just Now !

Summary

- □ Segmentation of NaI(Tl) enhances the sensitivity
 - High selectivity of signal and BG by segmentation
 - 0.05cmX5cmX5cm NaI(Tl) plates was successfully made.
- Good performance was obtained
 - 18% FWHM at 60keV
 - $E_{th} \sim 2-3 \text{keV}(\text{S.P.E} \sim 0.35 \text{keV})$
- Prospect
 - 16 modules stacked detector and 3 modules detector
 - Test experiment is now running.
 - Low BG measurement in OTO in this winter.

Collaboration

□ The University of Tokushima

K.F, H.Kawasuso, M.Toi, K.Yasuda, E.Matsumoto, E.Aihara, R.Hayami, S.Nakayama, N.Koori

□ Horiba Ltd.

- K. Imagawa, H. Ito
- Osaka University
 - K.Ichihara, S.Umehara, S.Yoshida, M.Nomachi, H.Nakamura, R.Hazama
- □ ICU, Spring-8
 - H.Ejiri