Signals from Dark Matter Indirect Detection

Christian Sander

Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany

2nd Symposium On Neutrinos and Dark Matter in Nuclear Physics, Paris, 3rd - 9th September 06

ヘロン 人間 とくほ とくほ とう

э.

Outline

- Introduction
- Indirect detection via charged particles ($e^+, \overline{p} \dots$)
- via neutrinos (from the sun or the earth)
- via gamma rays (from the halo or the Galactic center)
- A DMA signal? The EGRET excess in diffuse γ rays above 1 GeV

イロン 不得 とくほ とくほとう

Dark Matter

Energy/Matter Content of the Universe

- Combination of CMB data with Hubble expansion data from SNIa
- $\bullet\,\sim 27\%$ matter but only $\sim 4\%$ baryonic matter
- $\sim 1\%$ luminous matter
- \Rightarrow existence of baryonic and non baryonic DM

1

Rotation Curves of Galaxies

Observation vs. Expectation

- Expectation from Kepler's law: $v \propto 1/\sqrt{r}$ for $r \gg r_{disk}$
- Observation: $v \approx const$
- Possible explanation: existence of extended halo of DM

.⊒...>

Dark Matter

Hot Dark Matter Candidates (HDM)

Neutrinos

 \Rightarrow not more than 10% to 15% of Ω_{DM}

Cold Dark Matter Candidates (CDM)

- Massive neutrinos
- Primordial black holes
- Axions
- Weakly Interacting Massive Particles (WIMPs)

<ロト <回 > < 注 > < 注 > 、

æ

Dark Matter

One of the most promising candidates is the Weakly Interacting Massive Particle

Why?

- Assumption: DM in thermal equilibrium with early universe
- Approximative solution of the Boltzmann equation: $a_1 a_2^2 m_2 n_2 = (3.10^{-27} \text{ cm}^3 \text{ s}^{-1})$

$$\Omega_{\chi}h^{2} = \frac{m_{\chi}n_{\chi}}{\rho_{c}} \approx \left(\frac{3 \cdot 10^{-21} \text{ Cm}^{2} \text{ S}}{\langle \sigma v \rangle}\right)$$

⇒ cross sections of weak interaction

.⊒...>

Dark Matter Annihilation

If WIMPs are Majorana particle

- At present WIMPs annihilate almost at rest into pairs of monoenergetic SM particles
- Fragmentation/decay of products

 \Rightarrow e⁺, e⁻, ρ , $\overline{\rho}$, ν , $\overline{\nu}$, γ

and maybe light (anti-)nuclei like Deuteron or Helium

- Ordinary matter particles will vanish in the sea of bg
- Antimatter maybe be detectable above bg

ヘロン ヘアン ヘビン ヘビン

Positrons Antiprotons Neutrinos Gamma Rays

Positron Fraction

Conventional Model + DMA

→ E > < E >

< < >> < </>

э

Previous balloon (e.g. HEAT) and satellite (AMS01) experiments show a hint of an excess at high energies

 \rightarrow possible DMA contribution

Positrons Antiprotons Neutrinos Gamma Rays

Antiprotons

Conventional Model + DMA

イロト イポト イヨト イヨト

э

Difficult to compare different experiments because of solar modulation \rightarrow still room for a DMA contribution in conventional Galactic models

Positrons Antiprotons Neutrinos Gamma Rays

Pamela, AMS ...

Pamela (launched at 15th June 06) and **AMS02** (launched in ???) will measure charged particles (Pamela up to O, AMS02 up to Fe) Main scientific goals: antimatter search, Galactic propagation models

Positrons Antiprotons Neutrinos Gamma Rays

Neutrinos

DM trapped in sun (or earth) \rightarrow annihilation into pairs of SM particles \rightarrow decay/fragmentation to X + ν

- \rightarrow observation by detectors like AMANDA, Baikal, Antares, ICECUBE
- ... limits comparable to direct detection experiments

Positrons Antiprotons Neutrinos Gamma Rays

Gamma Rays

- WIMP annihilation in the halo or the Galactic center yields continous spectrum and monoenergetic lines (in many models loop suppressed)
- Propagation of gamma rays is simple ...
- ... but bg depends on charged components
- GLAST (up to 300 GeV) will be launched in 2007
- GLAST is successor of EGRET (<100 GeV)

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Diffuse Galactic Gamma Rays

EGRET Experiment

- Installed on CGRO satellite (together with BATSE, OSSE and COMPTEL)
- Measuring from 1991 to 2000
- Energy range from \sim 30 MeV to \sim 100 GeV
- Third EGRET catalog: 271 point sources
- Complete data point sources = diffuse gamma rays

イロト イポト イヨト イヨト

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Diffuse Galactic Gamma Rays

EGRET Excess

- Comparison with galactic models ⇒ Excess above 1 GeV
- Spectral shape of excess independent of sky direction
- Uncertainty of bg or a new contribution?

Contributions

- Decay of π^0 s produced in ppreactions of CR with IS gas $p + p \rightarrow \pi^0 + X \rightarrow \gamma\gamma + X$
- Bremsstrahlung $e + p \rightarrow e' + p' + \gamma$
- Inverse Compton

 $\mathbf{e} + \gamma \rightarrow \mathbf{e}' + \gamma'$

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Galactic Background of Diffuse Gamma Rays

Dominant Contribution

- π⁰ peak
- Shape determined by energy spectrum of CR protons
- CR proton spectrum measured locally by balloon experiments
- Locally measured spectrum is representative for rest of Galaxy
 → Conventional Model
- Uncertainty by Solar Modulation

< ≣ →

Calculation of bgs with GalProp

Moskalenko et al. astro-ph/9906228

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Galactic Background of Diffuse Gamma Rays

Uncertainty of Solar Modulation

- High energies: energy dependence γ_{high} is fixed (\approx 2.7)
- Low energies: uncertainty of γ_{low} can be compensated by solar modulation
- CM: $\gamma_{\text{low}} \approx 2.0 \Rightarrow \Phi_{\text{SM}} \approx 650 \text{ MV}$
- $\gamma_{\text{low}} \approx 1.8 \Rightarrow \Phi_{\text{SM}} \approx 450 \text{ MV}$
- $\gamma_{\text{low}} \approx 2.2 \Rightarrow \Phi_{\text{SM}} \approx 900 \text{ MV}$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Dark Matter Annihilation

Spectral Shape of DMA Signal ...

- WIMPs can annihilate at rest into a pair of monoenergetic SM particles
- Fragmentation/decay of products $\Rightarrow \pi^0 s$
 - \Rightarrow ~ 30. . . 40 γ s per annihilation
- Different γ spectrum than bg (continuous CR spectrum)
 ⇒ better fit to EGRET spectrum?
- Spectral shape similar for different annihilation processes

Calculation of signal with DarkSusy Gondolo et al. astro-ph/0406204 Gamma spectra for different processes ($m_{WIMP} \sim 100 \text{ GeV}$)

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Fit to EGRET Spectrum with DMA signal

Fit Spectral Shape Only

- Uncertainties in interstellar gas density
 - $\Rightarrow \text{bg scaling}$
- Uncertainties in DM density
 - \Rightarrow signal scaling (boost factor)
- Free bg and signal scaling

 \Rightarrow use point to point error \sim 7% (full error \sim 15%)

ヘロト ヘ戸ト ヘヨト ヘヨト

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Fit to EGRET Spectrum with CM and DMA signal

C. Sander

Indirect Search for Dark Matter

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Limits on WIMP Mass

Procedure

- $\Sigma \chi^2$ of 6 Regions of the Sky
- Scan over WIMP mass $\Rightarrow m_{WIMP} \lesssim$ 70 GeV (95% C.L.)

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Determination of Halo Parameters

Directional Dependence of Excess

- Signal in sky region Ψ : $\Phi_{\mathsf{DM}} \propto \langle \sigma \boldsymbol{v} \rangle \cdot \frac{1}{\Delta \Omega} \int d\Omega \int dI_{\psi} \left(\frac{\rho(I_{\psi})}{m_{\chi}} \right)^2$
- Smooth $1/r^2$ profile yields not enough signal \Rightarrow clumps
- Assume same enhancement by clumps in all directions

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Determination of Halo Parameters

Method

- Divide skymap into 180 independent sky directions
 ⇒ 45 intervals for gal. longitude
 (dlong = 8°)
 ⇒ 4 intervals for gal. latitude
 (|lat| <5°, 5° < |lat| <10°,
 10° < |lat| <20° and 20° < |lat|)
- Divide gamma spectrum in low and high (<>0.5 GeV) energy region
- Use low energy region for bg normalization
- Use high energy region for determination of halo parameters

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Determination of Halo Parameters

Isothermal Profile Without Rings

Triaxial profile with $1/r^2$ dependence at large r and core at center

- Good agreement at large latitudes
- Too little flux in galactic plane

C. Sander

Indirect Search for Dark Matter

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Determination of Halo Parameters

Isothermal Profile With Rings

lux [cm⁻² s⁻¹sr

Additional DM in galactic plane parametrized by two toroidal ringlike structures

background

0.5 GeV

Lonaitude

5" k |at| < 10

signal

- Inner ring at ~ 4 kpc; ~ thickness of lum. disk (e.g. adiabatic compression)
- Outer ring at ~ 14 kpc; much thicker than disk (e.g. infall of dwarf galaxy)

inner ring

cuter ring

/26 9/36

x² (bg only): 601,4/37

 $20^{\circ} < |lat|$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Visualization of Halo Profile

Sensitivity on ring parameters:

Dark Matter:

baryonic matter:

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Determination of Halo Parameters

Experimental Counterpart of Rings

Inner ring:

$$\label{eq:Minner} \begin{split} M_{inner} &\sim 9\cdot 10^9 M_\odot \approx 0.3\% \text{ of } M_{tot} \\ \text{coincides with maximum of } H_2 \text{ distribution} \\ \text{Hunter et al. Astrophys. J. 481} \ (1997) \ 205 \end{split}$$

• Outer ring:

 $\begin{array}{l} M_{outer}\sim 8\cdot 10^{10}M_\odot\approx 3\% \text{ of } M_{tot}\\ \text{correlated with ghostly ring of stars at}\sim 14 \text{ kpc} \ (10^8\ldots 10^9 \ M_\odot)\\ \text{Ibata et al. (astro-ph/0301067)} \end{array}$

Massive substructures influence rotation curve of milky way

◆□ → ◆◎ → ◆臣 → ◆臣 → ○

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Rotation Curve of the Milky Way

Comparison with Measured Rotation Curve

- Data are averaged from three surveys with different tracers
- Rings of DM can explain change of slope at \sim 10 kpc

without rings:

with rings:

C. Sander Indirect Search for Dark Matter

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Supersymmetry

Problems in the Standard Model (SM)

- No gauge coupling unification
- Hierarchy problem
- Fine tuning problem
- No DM candidat

Simultanous Soulution with Supersymmetry (SUSY)

- SUSY particles change running of couplings
- Hierarchy/fine tuning: SUSY-contributions have opposite sign → cancellation → logarithmic scale dependence
- DM: lightest Neutralino is (often) perfect candidat (massive, stable, only weak interaction)

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Supersymmetry

SUSY is broken, e.g. mSUGRA \rightarrow 5 new parameters

- m₀: unified mass of the fermion partners
- m_{1/2}: unified mass of the gauge boson partners
- tan β: ratio of the VEVs of the 2 Higgs doublets
- unified trilinear coupling A_0 , sign(μ)

Contraints of the parameter space

- Higgs mass m_h > 114.4 GeV (SuSpect, hep-ph/0211331)
- $Br(b \to X_s \gamma) = (3.43 \pm 0.36) \times 10^{-4} \text{ (micrOMEGAs, hep-ph/0112278)}$
- $\Delta a_{\mu} = (27 \pm 10) \times 10^{-10}$ (micrOMEGAs)
- $\Omega_{\text{DM}} = 0.113 \pm 0.008$ (micrOMEGAs or DarkSusy, astro-ph/0406204)
- SUSY mass limit, EWSB, LSP neutral ... (SuSpect, hep-ph/0211331)

ヘロン 人間 とくほ とくほ とう

3

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Neutralino Annihilation

• Neutralino is mixture:

$$\chi_0\rangle = N_1 |B_0\rangle + N_2 |W_0^3\rangle + N_3 |H_1\rangle + N_4 |H_2\rangle$$

 Annihilation cross section depends on SUSY and SM parameters

ъ

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Allowed Parameter Space

- Scan over m₀-m_{1/2}-plane for fixed values of tan β = 52.2 and A₀ = 0 GeV
- 2σ-contours for allowed region
 + consistency of the models
 (LSP neutral, EWSB ok)
- with EGRET-excess only a small region is left over: m₀: ~1500 GeV ... ~2000 GeV m_{1/2}: ~100 GeV ... ~250 GeV

イロト イポト イヨト イヨト

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

SUSY mass spectrum

Typical parameter set:

Parameter	value
<i>m</i> ₀	1500 GeV
<i>m</i> _{1/2}	170 GeV
A_0	0 · <i>m</i> ₀
$\tan \beta$	52.2
$\alpha_{s}(M_{Z})$	0.122
$m_t(pole)$	175 GeV
$m_b(m_b)$	4.214 GeV
Particle	mass [GeV]
$\tilde{\chi}^{0}_{1,2,3,4}$	64, 113, 194, 229
$ ilde{\chi}^{\pm}_{1,2}, ilde{g}$	110, 230, 516
$\tilde{t}_{1,2}$	906, 1046
$\tilde{b}_{1,2}$	1039, 1152
$\tilde{\tau}_{1,2}$	1035, 1288
$ ilde{ u}_{m{e}}, ilde{ u}_{\mu}, ilde{ u}_{ au}$	1495, 1495, 1286
h, H, A, H^{\pm}	115, 372, 372, 383

Unification of gauge couplings:

★ E → ★ E →

ъ

Supersymmetric Interpretation

w. exp. constraints:

Allowed Parameter Space version 2

Scatterplot of m_0 , $m_{1/2}$ and tan β ; only parameter sets with correct RD are plotted

Solutions at smallest $m_{1/2}$ yield at low T too small XS (p-wave) \rightarrow

large unphysical boost factors

wo. exp. constraints:

Indirect Search for Dark Matter

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Summary

- EGRET excess in the conventional Galactic model can be explained as Dark Matter annihilation of WIMPs in a mass range between 50 and 70 GeV
- Prom the directional dependence of the excess a *possible* halo profile can be determined ⇒ halo profile needs ringlike structures, which are correlated with observations
- Oetermined halo profile is compatible with rotation curve of the Milky Way (de Boer et al., Astronomy & Astrophysics 444 (2005) 51.)
- ³ EGRET data are compatible with DM consisting of supersymmetric neutralinos ⇒ together with constraints from EWSB, Higgs mass, $Br(b \rightarrow X_s \gamma)$ and a_μ only a small region of SUSY parameter space is left over, particle masses are in the discovery range of the LHC (de Boer *et al.*, Phys. Lett. B 636 (2006) 13.)

イロト イポト イヨト イヨト

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Direct Detection limits

- Best limits from CDMS/EDELWEISS/CRESST
- Cross section limit normalized to local $ho = 0.3 \text{ GeV cm}^{-3}$
- Our halo model has a higher $\rho = 1.2 \text{ GeV cm}^{-3}$
- Even larger uncertainties, if most of DM is in clumps

$\rho=$ 1.2 GeV cm^{-3}:

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Galactic Bg of Gamma Rays & Charged Particles

Propagation Equation

$$\begin{array}{ll} \frac{\partial \psi}{\partial t} &=& q(\vec{r},p) - \frac{1}{\tau_{f}}\psi - \frac{1}{\tau_{r}}\psi + \vec{\nabla}\cdot\left(D_{xx}\vec{\nabla}\psi - \vec{V}\psi\right) \\ &+& \frac{\partial}{\partial p}p^{2}D_{\rho\rho}\frac{\partial}{\partial p}\frac{1}{p^{2}}\psi - \frac{\partial}{\partial p}\left[\dot{p}\psi - \frac{p}{3}\left(\vec{\nabla}\cdot\vec{V}\right)\psi\right] \end{array}$$

Ingredients of Propagation

- Source spectrum
- Distribution of sources, gas and galactic fields
- Diffusion, Convection
- Energy losses, radioactive decay, interaction with IS gas

Solution of propagation equation with GalProp

Moskalenko et al. astro-ph/9906228

ヘロト 人間 ト ヘヨト ヘヨト

æ

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Magnetic Field of Galaxies

・ロト ・回ト ・ヨト ・ヨト

э

- A few µG perpendicular to galactic disk and along spiral arms
- Diffusion preferentially \perp to disk? Slow radial diffusion?
- Isotropic \rightarrow anisotropic diffusion
- Alternative: strong convection

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Preliminary results from GalPROP with isotropic and anisotropic diffusion

With anisotropic propagation flux of the charge particles can be tuned within a range of 2 orders of magnitudes, while the model is still ok with B/C an Be^{10}/Be^{9} !

ヘロア 人間 アメヨア 人口 ア

э

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Neutralino Annihilation

- s-wave (z.B. s-channel via A): $\langle \sigma v \rangle = \text{const}$ with $\Omega_{\text{DM}} = 0.113 \pm 0.008$ yields $\langle \sigma v \rangle \approx 2 \times 10^{-26}$ cm³/s
- p-wave (z.B. s-channel via Z): (σv) ∝ v todays DMA cross section is very small → large boostfactors

σ via A is dominant:

 σ via Z is dominant:

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

RD dependence on SM parameters

Large uncertainty, in particular for large tan β ; **Reason:** RGE of breaking parameters and EWSB \rightarrow uncertainties, e.g. in $m_A^2 = m_1^2 + m_2^2 = m_{H_1}^2 + m_{H_2}^2 + 2\mu^2 \rightarrow \langle \sigma v \rangle \rightarrow \Omega_{DM}$

Data and Background Spectral fit Determination of Halo Parameters Supersymmetric Interpretation

Electroweak symmetry breaking

- Pseudoscalar Higgs mass: $m_A^2 = m_1^2 + m_2^2 = m_{H_1}^2 + m_{H_2}^2 + 2\mu^2$
- Condition: $\frac{M_Z^2}{2} = \frac{m_1^2 m_2^2 \tan^2 \beta}{\tan^2 \beta 1}$
- Dependence on SM parameters by RGE
- For large tan β → running of m₁ and m₂ is steep
 - \rightarrow large uncertainty in $m_A \dots$
 - $\rightarrow \dots$ in $\langle \sigma v \rangle \dots$
 - $\rightarrow \dots$ and in RD

Running of breaking parameters:

ヘロト ヘ戸ト ヘヨト ヘヨト