Experiments for double beta decay and dark matter

Ettore Fiorini, NDM2006, Paris September 4, 2006

Je ne loue ni blâme pas, je report seulement (Talleyrand) I am not praising, nor blaming; I anly report

-Historically close connection both from the strictly scientific and technical point of view:

- Neutrinoless DBD => lepton number conservation => $< m_v >$ and m_v as possible component of DM

- Many experimental common problems (operation underground, reduction of the background, choice of detectors, hybrid techniques)

- Searches for WIMPs. started as a sub-product of DBD (Drukier, Avignone) Even now Synergy with $\beta\beta$ experiments

Evidence for DM in a spiral galaxy, superclusters etc

WMAP! (now three years of measurements)

Dee Marile

Marchine Md

	Symbol	Value
Description		
Total Density	Ω_{tot}	1.02±.02
Dark energy Density	Ω_{Λ}	.73±.04
Baryon Density	$\Omega_{\rm bar}h^2$.0224±.0009
Baryon Density	$\Omega_{ m bar}$.044±.004
Baryon Density (cm ⁻³)	N _{bar}	(2.5±.1) x 10 ⁻⁷
Matter Density	$\Omega_{\rm m}h^2$.135+008
Baryon Density	$\Omega_{\rm m}$.27±.04
Light Neutrino Density	$\Omega_{\rm v} {\rm h}^2$	$<.0076 \Rightarrow \Sigma m_{v} < .7 eV$
CMB Temperature (K)	T _{CMB}	$2.725 \pm .002$
CMB Photon Density	Νγ	410.4 ± .9
Baryon to Photon Ratio	η	$(6.1^{+.3}_{2}) \ge 10^{-10}$
Hubble Constant	h	.71 +.04
Age of the Universe (Gy)	T ₀	$13.7 \pm .2.04$
Age at Decoupling (ky)	T _{dec}	378 ⁺⁹ .7) x 10 ⁻¹⁰

How to search for WIMPS

By rude force (reduction of the background in the energy region expected for recoils induced by WIMPs

- Seasonal modulation due to the orbital motion of our observatory with respect

to the Sun

- Directionality
- Pulse shape and time discrimination
- Position reconstruction
- Hybrid techniques (heat+ light or ionization)
- Double phase liquid detectors "Bubble chambers" etc.

Events/kg/d for spin independent interaction with $m_{WIMP} = 100 GeV$ and $\sigma = 4.0 \times 10^{-43} \text{ cm}^2$ (~10⁷ ev/kg/d in an unshielded detector)

Threshold (keV)	Xe	Ge	Ar
no	.3	.05	.006
10	.03	.02	.004
20	.008	,008	.003
30	.0025	.004	.002
40	.0015	.0035	.0015
50	.0006	.0025	.001
60	.00015	.0015	.0008
70	.00006	.0008	.0006

-More techniques for DM than for searches on DBD. Some adopted for both searches and more should be

Nuclear-Recoil Discrimination

•2 Differences between nuclear recoils and electron recoils

From Akerib – Neutrino2006

DAMA results 107731 kg d a 6.3 σ effect

At present no running "conventional" experiment with similar mass, threshold and background, but many being planned including massive β β experiments. New => Korea Invisible Mass Search with CsI in the place of NaI

Thermal Detectors

~10 eV ~keV @ 2 MeV

Hybrid techniques Heat + ionization or heat + scintillation

Y-ray rejection > 99.99 %

CRESST II: Phonons and Scintillation

The "bubble chamber"

Future experiments for direct detection of WIMPS

Experiment	Target	Technique	Note
SuperCDMS	Ge,Si	cryogenic	Pulse shape inform.=>localization
Eureka	Ge,CaWO ₄	cryogenic	Improved suppr.of low β backgr
Zeplin	Xe	two phase	Scintillation + ionization
Xenon	Xe	two phase	Scintillation + ionization
Warp	Ar	two phase	Scintillation + ionization
Xmass	Xe	1/2 phase	Also for ββ decay
Deap	Ar	one phase	Cryogenic scintillator
Clean	Ar,Ne	one phase	Cryogenic scintillator
Drift	CS ₂	ТРС	Directiona
Sign	Ne	S and I	Scintillation and ionisation in gas
COUPP	CF ₃ I	Bubble Chamber	Insensitive to minimum ionizing particles

Many attempts (not only by DAMA) to reconcile DAMA with exclusion plots => annual modulation of spin dependent interaction on Na, anisotropic galactic halos, steams of WIMPS etc.,, many uncertain astrophysical and nuclear parameters

Spin dependent

DOUBLE BETA DECAY

1. $(A,Z) \implies (A,Z+2) + 2 e^{-} + 2 v_{e}^{-}$ 2. $(A,Z) \implies (A,Z+2) + 2 e^{-} + \chi (...2,3 \chi)$ 3. $(A,Z) \implies (A,Z+2) + 2 e^{-}$

Oscillations have been found in solar, atmospheric and reactor neutrino experiments, but only only indicate that ∆m v²≠0 to determine < m v > => neutrinoless double beta decay

Two neutrino ββ decay has been detected in ten nuclei also into exited states

Need to search for neutrinoless DBD in **various nuclei** A pick could be due to some unforeseen background peak

> Source = detector (calorimetric)

Source ≠ detector

Recent calculation by S. Pascoli and S.T. Petkov

Present experimental situation

Nucleus	Experiment	%	$Q_{\beta\beta}$	Enr	Technique	$T_{0v}(y)$	<m<sub>v)</m<sub>
⁴⁸ Ca	Elegant IV	0.19	4271		scintillator	>1.4x10 ²²	7-45
⁷⁶ Ge	Heidelberg- Moscow	7.8	2039	87	ionization	>1.9x10 ²⁵	.12 - 1
⁷⁶ Ge	IGEX	7.8	2039	87	Ionization	>1.6x10 ²⁵	.14 – 1.2
⁷⁶ Ge	Klapdor et al	7.8	2039	87	ionization	1.2x10 ²⁵	.44
⁸² Se	NEMO 3	9.2	2995	97	tracking	>1.x10 ²³	1.8-4.9
¹⁰⁰ Mo	NEMO 3	9.6	3034	95-99	tracking	>4.6x10 ²³	.7-2.8
¹¹⁶ Cd	Solotvina	7.5	3034	83	scintillator	>1.7x10 ²³	1.7 - ?
¹²⁸ Te	Bernatovitz	34	2529		geochem	$>7.7 \times 10^{24}$.1-4
¹³⁰ Te	Cuoricino	33.8	2529		bolometric	>2.4x10 ²⁴	.2-1.
¹³⁶ Xe	DAMA	8.9	2476	69	scintillator	>1.2x10 ²⁴	1.1 -2.9
¹⁵⁰ Nd	Irvine	5.6	3367	91	tracking	>1.2x10 ²¹	3 - ?

HM collaboration subset (KDHK): claim of evidence of 0v-DBD

In December 2001, 4 authors (KDHK) of the HM collaboration announce the discovery of neutrinoless DBD

 $\tau_{1/2}^{0_{v}}(y) = (0.8 - 18.3) \times 10^{25} \text{ y} (1 \times 10^{25} \text{ y b.v.})$

 $\langle M_{\beta\beta} \rangle = 0.05 - 0.84 \text{ eV} (95\% \text{ c.l.})$

71.7 kg•y 4 σ

better results in 2004

skepticism in DBD community in 2001

54.98 kg•y 2.2 σ

Two new experiments NEMO III e CUORICINO

Mass increase of bolometers

year

✓ Search for the $2\beta|_{ov}$ in ¹³⁰Te (Q=2529 keV) and other rare events ✓ At Hall A in the Laboratori Nazionali del Gran Sasso (LNGS) ✓ 18 crystals 3x3x6 cm3 + 44 crystals 5x5x5 cm3 = 40.7 kg of TeO2

✓ Operation started in the beginning of 2003 => \sim 4 months

✓ Background .18±.01 c /kev/ kg/ a

✓ T _{1/2} ⁰ (¹³⁰Te) > 2.4x 10²⁴ y <m_y> .19 -1.

2 modules, 9 detector each, crystal dimension 3x3x6 cm³ crystal mass 330 g 9 x 2 x 0.33 = 5.94 kg of TeO₂

Klapdor 0.1 – 0.9

11 modules, 4 detector each, crystal dimension 5x5x5 cm³ crystal mass 790 g 4 x 11 x 0.79 = 34.76 kg of TeO₂

 $\tau_{1/2}^{0_{V}}(y) > 2.4 \times 10^{24} y$

 $\langle M_{\beta\beta} \rangle < 0.2 - 1.0 \text{ eV} (90\% \text{ c.l.})$

Next generation experiments

Name		%	$Q_{\beta\beta}$	%	В	T (year)	Tech	<m></m>
				E	c/y			
CUORE	¹³⁰ Te	34	2533	90	3.5	1.8x10 ²⁷	Bolometric	9-57
GERDA	⁷⁶ Ge	7.8	2039	90	3.85	2x10 ²⁷	Ionization	29-94
Majorana	⁷⁶ Ge	7.8	2039	90	.6	$4x10^{27}$	Ionization	21-67
GENIUS	⁷⁶ Ge	7.8	2039	90	.4	$1x10^{28}$	Ionization	13-42
Supernemo	⁸² Se	8.7	2995	90	1	210 ²⁶	Tracking	54-167
EXO	¹³⁶ Xe	8.9	2476	65	.55	1.3×10^{28}	Tracking	12-31
Moon-3	¹⁰⁰ Mo	9.6	3034	85	3.8	1.7×10^{27}	Tracking	13-48
DCBA-2	¹⁵⁰ Nd	5.6	3367	80		$1x10^{26}$	Tracking	16-22
Candles	⁴⁸ Ca	.19	4271	-	.35	3x10 ²⁷	Scintillation	29-54
CARVEL	⁴⁸ Ca	.19	4271	-		3x10 ²⁷	Scintillation	50-94
GSO	¹⁶⁰ Gd	22	1730	-	200	1×10^{26}	Scintillation	65-?
COBRA	<u>115</u> Cd	7.5	2805				Ionization	
SNOLAB+	¹⁵⁰ Nd	5.6	3367				Scintillation	

The **CUORE** project

(approved by the S.C. of Gran Sasso Laboratory and by INFN)

CUORE is an array of 988 bolometers grouped in 19 colums with 13 flours of 4 crystals

750 kg TeO₂ => 600 kg Te => **203 kg** ¹³⁰Te

Crystals are separated by a few mm, only, with little material among them

Other possible candidates for neutrinoless DBD

Compound	Isotopic abundance	Transition energy
⁴⁸ CaF ₂	.0187 %	4272 keV
⁷⁶ Ge	7.44 "	2038.7 "
¹⁰⁰ MoPbO ₄	9.63 "	3034 "
¹¹⁶ CdWO ₄	7.49 "	2804 "
¹³⁰ TeO ₂	34 "	2528 "
¹⁵⁰ NdF ₃ ¹⁵⁰ NdGaO ₃	5.64 "	3368 "

- 130Te has high transition energy and 34% isotopic abundance => enrichment non needed and/or very cheap. Any future extensions are possible
- Performance of CUORE, amply tested with CUORICINO
- - CUORE has been approved and has already an underground location Dilution refrigerator already funded

Recent results obtained with scintillating crystals of Cd WO4

Background: in DM => ionizing particles in $\beta\beta$ => slow recoils eleminated with => Surface Sensitive Bolometers => scintillation vs.heat

How deep should we go, for DM and DBD? Neutrons =>Simulate DM => Background in the regtion of neutrinoless DBD

Depth Sensitivity Relation for Dark Matter

Depth Sensitivity Relation for DBD

No limit to CUORE sensitivitydue to neutron flux @ LNGS

What about the background from the rocks: two tests were planned with weak neutron source

CONCLUSIONS

The interest of experiments on DM and neutrinoless $\beta\beta$ decay is obvious. Establishing the existence of DM particles, would support Supersymmetry and have far reaching consequences not only in astrophysics, but also in subnuclear physics.

Oscillations exists and Δm^2 is finite . We need to determine the Majorana nature of the neutrino and the absolute value of $< m_v >$

Evidence has been presented in an experiment on the existence of WIMPs and in another on the existence of neutrinoless DBD.

They are not yet confirmed by other experiments (somebody disagree on the term yet)

Fundamental physics has received in the last years great advantages from the "wedding" between nuclear and subnuclear physics and astrophysics. Searches on DM and DBD are, and much more will be in the future a beautiful example of synergy, but this synergy will be likely extended soon to other interesting subjects like solar ands supernova neutrino physics. But this is not the end: in the fashinating field of astroparticle physics more results are expecting us and are probably beyond our imagination.