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1. Introduction '

® -less DBD is a best subject to determine the type of v (the Dirac or
Majorana type).

» As a complementary study, it is meaningful at present to survey the
possibility of whether 1 decay can be used as a tool to determine the
type of v.
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® \We propose a new parameterization of the et energy spectrum of the
decay that is suitable for investigating a deviation from the standard
model and discriminating between the types of v’s.

® We propose a method in which the x* value experimentally determined
by assuming the Dirac type v is compared with those determined by the
Majorana type v. This may provide a test to determine the type of v,
although it is indirect.



2. General framework '

» We assume the following effective weak interaction Hamiltonian:

Hw (z) = —={jlL adir + Nilgpainr 1305 adir + 55l winrt +HC @

V2

#® This is expected from the gauge models that contain both V' — A and
V + A currents: The appearance of the coupling constant )\ is due to
Wr, while terms with n and ~ come from the possible mixing
between Wi, and Wg.

® Inthe SU(2)r x SU(2)r x U(1) gauge model, x =7

® The left- and right-handed charged weak leptonic currents:

2n 2n
jﬁLa — ZEVO&(]- — '75)U£ij7 jﬁRa — ZEVO&(]- + VS)Wij (2)
71=1 71=1

for the case of the n generations. Here U,; and V,, are, respectively, the
left- and right-handed lepton mixing matrices. FE; is the mass eigenstate
of charged leptons and N; is of neutrinos with mass m;.



3.1 Differential decay rate for normal = decay '

® The uT decay takes place as
ut = et + N; + N, (3)

® N, represents an antineutrino for the Dirac v case, but
it should be understood as NN, for the Majorana v case.

® If the radiative corrections are not included, the differential decay rate for
emitted e* in the rest frame of polarized = is expressed as

T (p= — e*vD) m, G% W*
= Ar/x? — x5 D(x, 0 4
dx dcosf 6-4(m)3 v? =25 D(x, ) )

where
E Me _3 m?, +m?
= — = =965 x 10 °, W = a = 52.8 MeV. 5
TTw T W x om, ®)

® The angle 6 is the direction of the emitted e* with respect to the
muon polarization vector P; at the instant of the y* decay.
# The allowed range of x is limited kinematically as

_ 4 my)?
<z < = (1—r5) ~1 with 77, = (m . (6)
CUO €T :Cmax k k
=" = J I 2m, W




3.2 Energy spectrum of e™ inthe u™ decay '

® The et energy spectrum part is expressed as

zD(x, 0) = z[ N(x) + P, cos P(x) ] (7)

where P, = |P,| is the rate of muon polarization, and the isotropic part
N (x) and anisotropic part P(x) are

la+(3z — 22°) +12(kpc+ emkim )z (1 — z)| (8)

[a_(—:c—|—2332)—|—12(k_c—|—€mk_m):c(1—a:)} (9)
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#® We ignore some small terms proprotional to m. and neutrino masses.

#® The decay formulae for the Dirac and Majorana v’s are obtained by
setting ¢,, = 0 and ¢,, = 1, respectively.

# The first terms with setting A = a4+ = a— = 1 inthese N(z) and P(x)
correspond to the theoritical predictions from the standard model.

# The well-known Michel parameterization is obtained if we choose the
normalization factor A = A19 = a4+ + 2 k4 ..



3.3 Coefficients

® |nthe Dirac v case:
ai=(1:|:)\2) , kicz(%2in2) /2 (10)

# Itis assumed that all ’s can be emitted in the . decay. Then we
have Zj|Ugj|2 = Zj|‘/£j|2 =1 .
$® Inthe Majorana v case:
ax = [(1-7") (1-") £ X 0777
kre= [ (1-w)m 0w (1—-a D)) /2 @y

kem =K |Wep |” £ 0" |Wepn ] /2

® Uy’ v°, Wwe, and w1, are small quantities: We assume the
existence of heavy Majorana v's which are not emitted in the x*
decay. Then, we have ~/|Uy;|* =1 —u;* and X/|V,;|* = vg * where
the primed sums are taken over only the light v’s. In addition, the
following products of U and V' appear: we, = X, U.; V,; and
J— /
Wep h = Zk Vek; Uuk; .




3.4 New parameterization of energy spectrum '

» We have proposed a new parameterization that directly represents
deviations from the standard model. Here we present it taking a choice of

normarization factor A;o = a+ + 2k .. In this case, the well-known
Michel parameterization is obtained.

® Ifwe assume the SU(2)r x SU(2)r x U(1) model, our expression for the
energy spectrum of e™ is;

xD(z,0) =2°(3—2z) + 2p.x°(3—4z) + 12empmz (1 — )

+ P.fcosfz’(—1+ 2z) (12)
where
k-l— c k-l— m a— + 2k_ c

c = >0, pm= >0, and = : 13
p Al 0 p Al 0 5 Al 0 ( )

{ = X for the Dirac v case (14)

14+ A2 4292 ’
& ~ 1 for the Majorana v case, (15)

& = 1 for the standard model. (16)



4.1 Analysisby the TWIST group (Diracv case) '

The experimental data have been analyzed by the TWIST group using
expressions based on the Michel parameter pys in which the deviation of pjs
from 0.75 represents the deviation from the standard model.

D(z,0) = 62°[(1 —z) + gpM(élaz —3)]+ P& cosOz’(—1+2x) (17)

» \We propose to use the deviation of the spectrum from the SM spectrum
z?(3 — 2x). i.e. our parameterization is

rD(z,0) = 2°(3 — 22) + pex®(6 — 8z) + P, € cosfz°(—1 + 2z)

® The pu is related to our p. as py = 0.75 — S p..

® By using the y?-fitting, the TWIST group reported,
pur = 0.75080 & 0.00032(stat) + 0.00097(syst) & 0.00023,  (18)

In term of our parameter, p. = —2(8.0 £ 3.2+ 9.7 £ 2.3) x 10~*

#® The mean value is p. = —2 8.0 x 107, although p. > 0 is satisfied within
experimental uncertainty. Theoretically we have p. ~ (k* +1°)/2 > 0.



42 A=Ay casevsA = Ay case
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Analysis by TWIST group: use A = A; o for the normarization factor
zD(z,Z) = 2°(3 — 2z) + pcx®(6 —8z)  for A= A0 = a4 + 2k
If we use A = Ay,

zD(z,Z) = 2°(3 — 22) + pc122°(1 —z) for A= Ao = ay

x*2(3-2x) vs x*2 (6-8x) x*2(3-2x) vs 12x72 (1-%)
1.75
1.5
1.25

0.75
0.5
0.25

o
| . I . .
n Ul B Ul O U1 B

A= A case A = Ap, case
Y
In the case of A = Ay o, we will hardly obtain a negative value for p.
experimentally.

Why was the negative value for p. obtained experimentally in the case of
A=A107



5. How to determine the type of neutrino '

Our basic idea : x> - fitting of energy spectrum zD(z, = 7 ) through
theoretical expressions.

= compare y* value for the Dirac v (x3) with that for the Majorana v (x2,)

® |If y2, is much smaller than x3, there is a higher probability that v’s are of
the Majorana type.

$» The normalizaion factor A can include artificial constants n, ¢ and p:
A= An,g,p = a4 + 2nk+c + 2€€mk‘_|_m + 2p8m)\dr

» \We parameterize the energy srectrum in order to see a deviation from the
SM. Here we keep the zo terms, (zp = 2 = 9.65 x 10™°):

zpD(x, g) = 2,3z — 22" —x3) + H(z), zp=+/22—22 (19)



®» Dirac v case:

H(z) = pexp{(12 — 6n)x — (12 — 4n)z? + 2nz§}

Pc = %(/432+772) > 0

$ Majorana v case:

H(z) = (pe + pm)p{(12 — 6q — 6z07y)z — (12 — 4q)2” + 2q2§ + 6z07}

pe = LK T2 4102 Te?) > 0, pm = L8 [Wenl? + 0 [Wennl?) > O,

npe + Lpm + Pm

qg= IS also a artificial constant,
Pc T Pm
Pc + pm

= Some differences appear only in the zy~v terms, although they may be
difficult to be directly detected experimentally.



Summary '

We have surveyed the possibility of whether © decay can be used as a tool to
determine the type of v.

$® Muon decay takes place irrespective of the type of neutrino.

® There is a difference in the energy spectra of emitted e between the
Dirac and Majorana v cases.
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® \We propose a new parameterization of the e™ energy spectrum of the
decay that is suitable for investigating a deviation from the standard
model and discriminating between the types of v’s.

® \We propose a method of discriminating the type of v by using x? -fitting

of the et energy spectrum: We propose a method in which the x* value
experimentally determined by assuming the Dirac type v is compared
with those determined by the Majorana type v. This may provide a test to
determine the type of v, although it is indirect. However it may be difficult
at present, because some differences appear only in the small zy~ terms.



Note 1. Normalization factor A '

There are various possibilities for the choice of A, when experimental data are
analyzed, although these choices differ only by rearrangements of the terms in

the theoretical expression for the e™ energy spectrum.

e.g.
fz) +wg(z) = 1+ nw){f(z) + Ty l9(z) — nf(z)]}

® A=1case <+ f(z)+ wg(x)is used:

Use leading term f(z) and small deviation term wg(z) with weight w,
then the unknown constant w is determined experimentally by minimizing

2
the x2-value defined by x> = 3y [“d(‘”’f)_y’f} .

aak

® yi = f(zr) + wg(zy) is theoretical value. d(zy) and oy, are,
respectively, the corresponding experimental value of spectrum and
its experimental error. Here a Is introduced as a adjustable constant.

® A=(1+nw)case <= f(z)+ =2=[g9(x) —nf(z)]is used:

1+nw

We can determine the evalue of the ;" experimentally. Here n is
Introduced as a artificial constant.




Note 2. Analysis by the TWIST group '

® The experimental data have been analyzed by the TWIST group using
expressions based on the Michel parameters:

2
N(z) = 6 [az(l —x)+ gPM (4332 — 3z — x%) + navrxo(l — :U)}(?_O)

P(z) = 2&my/x? — xd [(1—33)4—%51\4 (43:—3—7“8)}, (21)

2

where 1 = e = (1 /T—23) =4.66-107°

® These expressions are presented for the Dirac neutrino case with
m, = 0. In the standard model, these parameters take definite values:
PM = (SM = 0.75, €M =1, and nM = 0.

® In our model, there is no n,, term, even in the massive Dirac neutrino
case, if we ignore terms proportional to m,. The reason why the ny; # 0
term appears in the Michel parameterization by Fetscher and Gerber is
that it comes from the interference between the (V + A) and (S + P) (or
T') interactions.

® The 23 value was also reported as 1804,1814,1951,1965,1993 for 5 data
sets with 1887 freedom.



Note 3. A = A1y case, with ignoring z( terms '

® Dirac v case:
rD(z,T) = 2°(3 — 2z) + p.z°(6 — 8x)

’ 2

pe = 5(K* +n%) >0

$» Majorana v case:




Note4. A = A, , case, with ignoring z, terms '

We present a analysis using a normalizaion factor which includes artificial
constants n and ¢ as given by

A= An,g = a4+ + 2nk+c + 2€€mk+m (22)

® Dirac v case:
, 2) =2%(3 — 2z) + pez?{(12 — 6n) — (12 — 4n)x}

$ Majorana v case:

C g m . cpn
Here ¢ = npe + £p Is also a artificial constant.
Pc T Pm
» We can't determine the type of v because the x dependences are the
same.

= Some different z-dependences appear in x, terms which was neglected in
the present analysis.
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