overview of AMANDA & IceCube

as a framework: high energy neutrino astronomy

results from AMANDA

IceCube: status and first events

Outlook

Carlos de los Heros, Uppsala University

NDM06. Paris, Sep. 3-9, 2006

neutrino astronomy

- nature accelerates particles to ~10⁶ times the CM energy of LHC!
 - \rightarrow acceleration sites must sit somewhere

candidate sources:

- SNe remnants, µquasars
- active galactic nuclei
- gamma ray bursts

guaranteed sources:

- ...we know the beam and target are there...
- atmosphere: neutrinos from π & K mesons decays
- galactic plane:
 - CR interacting with ISM, concentrated on the disk
- Cosmic Microwave Background (diffuse):

– UHE $p \gamma \rightarrow \Delta^+ \rightarrow n \pi^+ (p \pi^0)$

proton accelerators

particle propagation in the Universe

production: neutrino production at source: p+γ or p+p collisions give pions:

 $\pi \rightarrow \mu_{\nu} + \nu_{\mu} \rightarrow \mu_{\nu} \rightarrow e^{-} + \nu_{\mu} + \nu_{e}$

neutrino flavors: $v_e : v_{\mu} : v_{\tau}$ 1:2:~0 at sou Expect 1:1:1 at detector

propagation:

photons: can be absorbed on intervening
 matter or radiation;
protons: deviated by magnetic fields

at high-enough energies: **p** and γ react with the CMB bckgr.

v's will get to you

however: v's extremely difficult to detect!

current HE neutrino detection efforts

OPTICAL RADIO ACOUSTIC

@ extremely high energies ($E > 10^{18} eV$)

absorption length Bat for ice (increases with temperature) absorptivity [m⁻¹] 10 ice dust 10 traces dust concentration 600 550 wavelength [nm] 1200 2-component 1400 depth [m] AMANDA depth 350 2200 300

on average:

absorption	eff. Scattering
length	length
@ 400 nm	@ 400 nm
110 m	20 m

optical properties:

data from calibration light sources deployed along the strings and from cosmic ray muons.

as a framework: high energy neutrino astronomy

results from AMANDA

IceCube: status and first events

Outlook

in this talk:

AMANDA results from:

- → atmospheric neutrinos
- \rightarrow searches for an extra-terrestrial v flux:
 - \rightarrow galactic plane
 - \rightarrow diffuse
 - \rightarrow point source
 - → transient (known 'flary' objects & GRBs)
- \rightarrow search for dark matter in the form of WIMPs:
 - \rightarrow Excess of neutrinos from the center of the Sun/Earth

→ Other topics: cosmic ray composition, gamma-ray astronomy with muons, supernova searches, exotic particles

- agreed AMANDA collaboration strategy: analyses are done 'blind'.
cuts optimized on a % of data or on a time-scrambled data set.
- systematic uncertainties (can be big in our case) included in limit calculations

AMANDA detector performance

known beam: atmospheric neutrinos

atmospheric neutrinos:

- guaranteed test beam
- background for other searches
- \blacktriangleright reconstruct energy of up-going $\mu\s$
- obtain v energy spectrum from regularized unfolding

 → how much E⁻² cosmic v - signal allowed within uncertainty of highest energy bins?

first spectrum > 1 TeV (up to 300 TeV) - matches lower energy Frejus data

 $E^2 \Phi_{\nu_{\rm H}}(E) < 2.6 \cdot 10^{-7} \, {\rm GeV} \, {\rm cm}^{-2} \, {\rm s}^{-1} \, {\rm sr}^{-1}$

limit on diffuse $E^{-2} v_{\mu}$ flux (100 -300 TeV):

v's from the galactic plane

- **location of AMANDA not optimal** \rightarrow reach only outer region of the galactic plane: $33^{\circ} < \delta < 213^{\circ}$
- three signal ansatz:

line source, Gaussian source, diffuse source

- limits include systematic uncertainty of 30% on atm. v flux
- energy range: 0.2 to 40 TeV

data sample 2000-03: 3369 v evts:

on-source region	on-source events	expected background	90% event upper limit	line source limit GeV ⁻¹ cm ⁻² s ⁻¹ rad ⁻¹	diffuse limit GeV ⁻¹ cm ⁻² s ⁻¹ sr ⁻¹	gaussian limit GeV ⁻¹ cm ⁻² s ⁻¹ sr ⁻¹
±2.0°	128	129.4	19.8	6.3 × 10 ⁻⁵	6.6 × 10 ⁻⁴	
±4.4°	272	283.3	20.0			4.8 × 10 ⁻⁴

search for HE neutrinos from the cosmos

strategies in the search for point sources:

•diffuse flux with no time-space correlations. •from high energy tail of atmospheric ν_{μ} , 100 – 300 TeV • from cascades @ higher energies, 50 TeV < E < 5 PeV

spatial correlation with steady objects
search for clusters of events (w. or w/o catalogue)
stacking of same-type of point source candidates

space and/or time correlation with transient phenomena
known active flary periods of TeV gamma sources
coincidence with GRBs

energy regions:

analyses optimized for $v_{\underline{\mu}}$ (reduced sensitivity to v_e and v_{τ})

<u>HE</u>: TeV < E_v < PeV

•search confined to up-going tracks

<u>UHE:</u> $E_v > PeV$

•Earth opaque: search in the upper hemisphere and close to the horizon

<u>all-flavour</u>

<u>Cascades:</u> $TeV < E_v < PeV$

• 4π sensitivity

search for point sources in the northern sky

data from 2000-2004 (1001 days) 4282 v from northern hemisphere

4250 ⁺³⁰⁰₋₁₀₀₀ v expected from MC atmospheric background

- search for excesses of events on:
 - a grid on the full Northern Sky
 - a set of selected candidate sources
 - stacked search of generic source classes

Atm-v Background from 'off-source' data \rightarrow only statistical error ~ 7% Flux upper limits by comparison to signal simulation (E⁻² spectrum)

search for clusters of events from known objects

	Source	Events observed/ background (2000-2004)	Excess parameter -log10 P	Flux upper limit Φ_0 @ 90% CL for Φ	Flux upper limit (15% sys, 7% stat) $\Phi_0 @ 90\%$ CL [10 ⁻⁷ GeV cm ⁻² s ⁻¹] for $\Phi = \Phi_0 E^{-2}$	
				$\Phi_0(v_\mu)$	$\Phi_0(v_{\mu}+v_{\tau})$ (1:1)	
	Markarian 421	6 / 7.37	0.13	0.42	0.74	
SNR Microquasar AGN	Markarian 501	8 / 6.39	0.51	0.85	1.47	
	1ES1959+650	5 / 4.77	0.29	0.78	1.35	
	M87	6 / 6.08	0.25	0.49	0.87	
	3C273	8 / 4.72	0.98	1.00	1.80	
	SS433	4 / 6.14	0.06	0.27	0.48	
	LSI +61 303	5 / 4.81	0.28	0.74	1.26	
	Cygnus X-1	8 / 7.01	0.39	0.77	1.32	
	Cygnus X-3	7 / 6.48	0.50	0.68	1.18	
	Cassiopeia A	5 / 6.00	0.15	0.51	0.89	
	Crab Nebula	10 / 6.74	0.84	1.02	1.78	

- ... out of 32 sources in candidate list
- No significant excess, no indication for a neutrino source
- Systematic error of 15% on signal prediction included in limits

90% confidence level flux upper limits for the northern hemisphere (15% systematic error included)

diffuse flux search

- Sample of atmospheric neutrinos optimized for best sensitivity
- MC prediction normalized to data in the range $50 < N_{hit OMs} < 100$
- Search for signal in the $N_{hit OMs}$ >100 region

2000-2003

AMANDA diffuse limits

AMANDA diffuse limits compared with models

limits for specific flux predictions:

- cuts optimized for each case.
- some models excluded at 90% CL:

Szabo-Protehoe 92. Proc. HE Neutr. Astrop. Hawaii 1992. Stecker, Salamon. Space Sc. Rev. 75, 1996 Protheroe. ASP Conf series, 121, 1997

search for $v^{\,\prime}\,s\,$ correlated with GRBs

low background analysis due to both space and time coincidence search!

- catalogues: BATSE+IPN3
- bckg. Stability required within ±1
 hour from burst
- several search techniques:
 - coincidence with T90
 - precursor (110s before T90)
 - cascades (all flavour, 4π!)
 -coincident with T90
 -rolling time window
 (no catalogue)

year	# GRBs	from	preliminary 90%CL upper limit assuming WB spectrum <i>(E</i> _B at 100 TeV and Γ = 300)
'97 - '00	312	BATSE triggered bursts	$E^2 d\Phi_v / dE = 4 \cdot 10^{-8} \text{GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$
'00 - '03	139	BATSE & IPN bursts	<i>E</i> ²dΦ _v /d <i>E</i> = 3 · 10 ⁻⁸ GeV cm ⁻² s ⁻¹ sr ⁻¹
'01 - '03	50	IPN bursts	(Assuming the Razzaque model) <i>E</i> ²d⊕ _v /d <i>E</i> = 5 · 10 ⁻⁸ GeV cm ⁻² s ⁻¹ sr ⁻¹
'01	(425)	Rolling window	$E^2 d\Phi_v / dE = 2.7 \cdot 10^{-6} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$
'00	73	BATSE triggered bursts	<i>E</i> ²dΦ _v /d <i>E</i> = 9.5 · 10 ⁻⁷ GeV cm ⁻² s ⁻¹ sr ⁻¹

search for DM candidates in the Sun/Earth

- $\Omega_{\rm m} \approx 30\%, \, \Omega_{\rm b} \approx 4\%$
- → non-baryonic matter
- \rightarrow MSSM candidate: the neutralino, χ

 $\boldsymbol{\chi}$ may exist as relic gas in the galactic halo

gravitational accumulation in Sun/Earth makes 'indirect' searches with neutrino telescopes possible neutralino-induced neutrinos:

$$\chi \chi \rightarrow \left\{ \begin{array}{c} qq \\ l^{+}l^{-} \\ W, Z, H \end{array} \right\} \rightarrow \nu$$

signature: v excess from Sun/Earth's center direction

A lot of physics (ie. uncertainties) involved:

- relic density calculations
- DM distribution in the halo
- velocity distribution
- χ properties (MSSM)
- interaction of χ with matter (capture)

no excess of neutralino induced muons

- No excess observed \rightarrow upper limit on muon flux from neutralino annihilation in Sun or Earth
- # of observed events for given model & nb expected from atmospheric $v \rightarrow$ upper limit on # signal events (90% CL)
- Effective volume (sensitivity to signal) from MC
- \rightarrow upper limit on muon flux $\Phi_{\mu}(E_{\mu}{>}1~GeV)$ from neutralino annihilations

muon flux limit: Earth analysis

- Improvement wrt '97 pub:
 - 3x statistics
 - Better reconstructions
 - Filter optimised for each model
- MSSM models predictions
 disfavoured by CDMS
- Ongoing improvements:
 - AMANDA II data 2001-05
 - New trigger lowers E_{th} expect improvement for $m(\chi_1^0) < 100$ GeV

(accep. Astropart. Phys.)

muon flux limit: Sun analysis

- 1st AMANDA II solar neutralino result (2001data)
- 200m diameter enables robust reconstruction of horizontal tracks
- Ongoing improvements:
 - Statistics 2000-05
 - Trigger for low energies
 - Better reco horizontal tracks
 - Combination AMANDA-IceCube 9 strings

AMANDA-II prospects

Improvements

- more statistics: 2001-2003 data set
- improved reconstructions
- new trigger lowers E_{thresh}!

(hard annihilation: $xx \rightarrow WW$ soft annihilation: $xx \rightarrow bb$)

IceCube prospects

Supernovae search

Bursts of low-energy (MeV) neutrinos from core collapse supernovae

 $v_e^+ p \rightarrow n + e^+$

The produced positron is emitted almost isotropically

Detection via rate increase of the dark noise rate

SNEWS (SuperNova Early Warning System) is a collaborative effort among Super-K, SNO, LVD, KamLAND, AMANDA, BooNE and gravitational wave experiments

(Large Magellanic Cloud, ~50 kpc)

the IceCube observatory: IceCube+IceTop

surface array: IceTop

- 80 stations air shower array (one per IceCube string)
- similar station concept as Auger
- 2 tanks (2 DOMs each) per station
- 125 m grid, 1 km² at 690 g/cm²

deep ice array: IceCube

- digital readout technology (DOMs)
- 80 strings, 60 DOM's each
- 17 m DOM spacing
- 125 m between strings
- hexagonal pattern over 1 km²x1 km

the Digital Optical Module

Each DOM is an autonomous data collection unit

Power consumption: 3W

25 cm Hamamtsu PMT

- Measures arrival time of every photon
- 2 Analog Transient Waweform Digitizers at 300 MHz
 for 400 ns range and FADC recording at 40 MHz
 6.6 μ
 s range (event duration in ice)
- Dynamic range 500pe/15 nsec, 25000 pe/6.4 μs

Send all data to surface over 3.3 km twisted pair copper cable: power, data and time stamping

Clock stability: 10⁻¹⁰ ≈ 0.1 nsec / sec Synchronized to GPS time every ≈5 sec at 2 ns precision

- Dark Noise rate ~ 350 Hz
- Local Coincidence rate ~ 15 Hz
- Deadtime < 1%
- Timing resolution \leq 2-3 ns

Data rate full detector: 120 GB/day raw 30 GB/day satellite bandwidth

5MW x 30 hrs = 0.56 TJ!

AMANDA drilling (1950m) 90 hrs deployment: 18 hrs IceCube drilling (2450m) 40 hrs, deployment: 10 hours

IceCube: an all-flavor neutrino telescope

IceCube will be able to identify

 $\begin{array}{ll} - \ \mu \ tracks \ from \quad \nu_{\mu} \ for \ E_{\nu} > 100 \ GeV \\ - \ cascades \ from \quad \nu_{e} \ for \ E_{\nu} > \ 10 \ TeV \\ - \qquad \qquad \nu_{\tau} \ for \ E_{\nu} > \ 1 \ PeV \end{array}$

background

mainly downgoing μ bundles (+ uncorrelated coincident μ 's)

- exp. rate at trigger level ~1.7 kHz
- atm. ν_{μ} rate at trigger level ~300/day

IceCube: A_{eff} and resolution

an IceCube/IceTop events

run 1 event 288

timing verification with flashers

outlook

•a wealth of physics results from AMANDA-II on several topics

•multi-year analyses in progress: improvements expected soon

•sensitivity reaching the level of current predictions of v production in AGN. Some models already excluded @ 90%CL

 first Km³ project (IceCube) started at the South Pole: taking data with 9 strings+32 IceTop tanks (3x size of AMANDA)

•12 additional strings to be deloyed next season (and so on till completion)

• performance consistent with specifications