### MINOS Results from the First Year of NuMI Beam Operation

Alexandre Sousa Oxford University (for the MINOS Collaboration)

The 2<sup>nd</sup> Symposium on Neutrinos and Dark Matter in Nuclear Physics Paris, September 3-9, 2006





- Introduction to the MINOS experiment
- Data and event selection
- Oscillation analysis
- Results from the First Year of NuMI Beam Running
  Total exposure of 1.27×10<sup>20</sup> POT (protons-on-target)
- Summary and Outlook



Argonne – Athens – Benedictine – Brookhaven – Caltech – Cambridge – Campinas – Fermilab – College de France – Harvard – IIT – Indiana – ITEP Moscow – Lebedev – Livermore – Minnesota, Twin Cities – Minnesota, Duluth – Oxford – Pittsburgh – Protvino – Rutherford Appleton – Sao Paulo – South Carolina – Stanford – Sussex – Texas A&M – Texas-Austin – Tufts – UCL – Western Washington – William & Mary -Wisconsin

## **The MINOS Experiment**



- MINOS (Main Injector Neutrino Oscillation Search)
  - Long-baseline neutrino oscillation experiment
  - Neutrino beam provided by 120 GeV protons from the Fermilab Main Injector.

#### Basic concept

- Measure the energy spectrum at the Near Detector, at Fermilab
- Measure the energy spectrum at the Far Detector, 735 km away, deep underground in the Soudan Mine.
- Compare Near and Far measurements

#### **Physics goals**

- Make a precision measurement of  $\Delta m_{32}^2$  by  $v_{\mu}$  disappearance
- − Search for sub-dominant  $v_{\mu}$  →  $v_{e}$  oscillations by  $v_{e}$  appearance
- Search for/constrain exotic phenomena (sterile v's, v decay)
- Compare v,  $\overline{v}$  oscillations (CPT test)
- Atmospheric neutrino oscillation studies
  - Phys.Rev.D73,072002(2006)

# **The NuMI Neutrino Beam**



120 GeV protons strike water cooled graphite target, producing kaons, pions

- 2 parabolic magnetic horns focus secondaries, which decay into muons, neutrinos
- Beam energy spectrum can be tuned by varying the relative positions of target, horns
- First year performance
  - 10µs spill of 120 GeV protons every 2s
  - Intensity: 2.3×10<sup>13</sup> POT/spill
  - 0.2 MW average beam power

06/09/2006



# **MINOS Detector Technology**



- MINOS Near and Far Detectors are functionally identical
- Iron/Scintillator tracking calorimeter
  - 2.54cm steel planes, <B>=1.2T
  - 1.0 × 4.1cm extruded polystyrene scintillator strips, up to 8m long.
  - Readout via wavelength shifting fibers
  - Hamamatsu multi-anode PMTs

(M16 Far and M64 Near)

- Alternate planes rotated by  $\pm 90^{\circ}$  (U,V)



06/09/2006

# **MINOS Detectors**

#### **Near Detector**

- Located 1km downstream of the target
- ~1kt (980t) total mass
- Shaped as squashed octagon (4.8×3.8×15m<sup>3</sup>)
- Partially instrumented (282 steel, 153 scintillator planes)
- Fast QIE readout electronics, continuous sampling during beam spill



Veto Target Hadron Shower planes 0:20 planes 21:60 planes 61:120 Muon Spectrometer planes 121 : 281

#### **Far Detector**

- Located 735km away in Soudan mine, MN
- 5.4kt, 2 supermodules
- Shaped as octagonal prism (8×8×30m<sup>3</sup>)
- 486 steel planes, 484 scintillator planes
- Veto shield (scintillator modules)
- Spill times from Fermilab for beam trigger



#### 06/09/2006

# **Event Topologies**

#### UZ UZ VZ VZ VZ VZ VZ VZ VZ VZ

v<sub>u</sub> CC Event

Long µ track + hadronic activity at vertex

#### **NC Event**





Short showering event, often diffuse

# Monte Carlo $v_e$ CC Event



Short event, with EM shower profile

 $E_v = E_{shower} + p_{\mu}$ 

55%/√E/Gev 6% range, 13% curvature

06/09/2006

# **Event Pre-Selection Cuts**

#### Beam monitoring and detector quality cuts

- $v_{\mu}$  CC pre-selection cuts:
- At least one good reconstructed track
- The fitted track should have negative charge (selects  $v_{\mu}$ )
- The reconstructed track vertex should be within the fiducial volume of the detector

#### **NEAR**:

1m < z < 5m (from detector front),  $\rightarrow$  R < 1m from beam center.

#### FAR:

- z > 50cm from front face,
- z > 2m from rear face,
- R < 3.7m from detector center.





# **CC Event Selection**

Final selection employs a likelihood based procedure with probability density functions (PDFs) for three low level variables

- Event length
  - Related to  $p_{\mu}$
- Fraction of event PH in track
  - Related to inelasticity of CC events
- Track pulse height per plane
  - Related to track dE/dx
- Probability P<sub>μ</sub>(P<sub>NC</sub>) is the product of the three CC (NC) PDFs at the value of these variables taken by the event





# **CC Selection Parameter**

Particle ID (*PID*) parameter obtained from the likelihood procedure is defined as:

$$PID = -\sqrt{-\log(P_{\mu})} + \sqrt{-\log(R_{NC})}$$

- CC-like events are defined by PID > -0.2 in the FD (> -0.1 in the ND)
  - NC contamination limited to low energy bins (below 1.5 GeV)
  - High purity selection. Efficiency mostly flat as a function of visible energy



# **FarDet Beam Event Selection**

#### Timing

- Far Detector spill trigger reads out 100µs of activity around beam spill
- Use topology of Far Detector neutrino events
  - Separation from cosmics via 53° cut around beam axis
- Cosmic ray background estimated using
  - Sideband analysis of timing plot: No accepted events outside of expected spill duration
  - Upper limit on BG of 0.5 events
- Event rates show no time dependence
- Blind Analysis Policy: hide fraction of data as a function of event length and energy, "open the box" when the analysis procedures are defined and validated



06/09/2006

### **Predicting Unoscillated FD Spectrum**



Start with Near Detector data and perform extrapolation to the Far Detector

- Use Monte Carlo to provide corrections for energy smearing and acceptance effects and apply them to measured ND spectrum
- Use knowledge of pion decay kinematics and beamline geometry to construct a beam transport matrix and predict FD spectrum from measured ND spectrum
- Apply detector MC corrections to predict observed FD spectrum
- The "Beam Matrix" method is the primary method used in the MINOS CC analysis



Alex Sousa - NDM06

### **Predicted FD Spectrum**



- In parallel to the Beam Matrix method, 3 other extrapolation methods were applied to the data.
- The 4 extrapolation methods investigated give consistent predictions and are robust to different types of systematics.

# **FD Observed vs. Expected**

| Data Sample              | FD<br>Data | Expected<br>(Matrix Method;<br>Unoscillated) | Data/MC<br>(Matrix Method) |
|--------------------------|------------|----------------------------------------------|----------------------------|
| ν <sub>μ</sub> (<30 GeV) | 215        | 336.0±14.4                                   | 0.64±0.05                  |
| ν <sub>μ</sub> (<10 GeV) | 122        | 238.7±10.7                                   | 0.51±0.05                  |
| ν <sub>μ</sub> (<5 GeV)  | 76         | 168.4±8.8                                    | 0.45±0.06                  |

- A 49% deficit with respect to the no disappearance hypothesis is observed for energies between 0-10GeV
- Significance of the effect is 6.2σ (stat+syst)

# **Systematic Errors**

Magnitude of systematic shifts of the oscillation parameters is computed using MC fake data samples at the best fit values of  $\Delta m^2$ ,  $\sin^2(2\theta)$ , shifted by the values shown in the table

| Uncertainty                             | Shift in ∆m <sup>2</sup><br>(10 <sup>-3</sup> eV <sup>2</sup> ) | Shift in<br>sin²(2θ) |
|-----------------------------------------|-----------------------------------------------------------------|----------------------|
| Near/Far normalization ±4%              | 0.050                                                           | 0.005                |
| Absolute hadronic energy scale ±11%     | 0.060                                                           | 0.048                |
| NC contamination ±50%                   | 0.090                                                           | 0.050                |
| All other systematic uncertainties      | 0.044                                                           | 0.011                |
| Total systematic (summed in quadrature) | 0.13                                                            | 0.07                 |
| Statistical error (data)                | 0.36                                                            | 0.12                 |

- Total systematic error is ~40% of statistical error in  $\Delta m^2$
- 3 largest systematic uncertainties are included in the oscillation fit as nuisance parameters

### **MINOS Best Fit Spectrum**

#### Best fit energy spectrum and Data/MC Ratio for 1.27×10<sup>20</sup> POT



#### 06/09/2006

#### **MINOS Allowed Regions**



#### Summary

MINOS has completed an oscillation analysis of the first year of NuMI beam exposure, corresponding to **1.27**×**10**<sup>20</sup> **POT** 

- Excludes no  $v_{\mu}$  disappearance at 6.2 $\sigma$  (rate only)
- Consistent with neutrino oscillations with parameters:

$$\left|\Delta m_{32}^{2}\right| = 2.74_{-0.26}^{+0.44} \text{ (stat + syst)} \times 10^{-3} \text{ eV}^{2}$$
  
 $\sin^{2}(2\theta_{23}) = 1.00_{-0.13} \text{ (stat + syst)}$ 

- Results submitted to PRL (hep-ex-0607088)
- The systematic uncertainties are under control and substantial improvements on understanding them should be made as MINOS collects more data
- Second year of data taking is underway, look forward to improved results, other analyses

0

### Outlook

#### $v_{\mu}$ Disappearance

**MINOS Sensitivity as a function of Integrated POT** 

(eV<sup>2</sup>) 0.004 **MINOS** MC ັ້ E0.0035 0.003 sin<sup>2</sup>20<sub>23</sub>=1.00  $\Delta m_{32}^2 = 2.74 \times 10^{-3} eV^2$ 0.0025 90% C.L. stat. err. only ---- 2.5x10<sup>20</sup> POT 0.002 - 7.4x10<sup>20</sup> POT - 16x10<sup>20</sup> POT 0.0015 ······ Super-K (zenith angle) 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.001 sin<sup>2</sup>20

 MINOS will significantly improve the current result as the number of POT increases

#### $v_e$ Appearance

90% CL Sensitivity to  $sin^2(2\theta_{13})$ 



- MINOS could make the first ever measurement of  $\theta_{13}$ 
  - Can improve on current best limit set by CHOOZ

#### More to come soon!!

# **Backup Slides**



# **First year of NuMI Running**



# **NuMI Beam Composition**

Movable target relative to horns allows beam energy tuning

- Currently running in the LE-10 configuration
- ~1.5  $\times$ 10<sup>19</sup> POT in pME and pHE configurations early in the run for commissioning and systematics studies



98.7% 
$$\mathbf{v}_{\mu} + \overline{\mathbf{v}}_{\mu} \left( 5.8\% \overline{\mathbf{v}}_{\mu} \right)$$
  
1.3%  $\mathbf{v}_{\mu} + \overline{\mathbf{v}}_{\mu}$ 

| Beam  | Target z<br>position (cm) | FD Events per 1<br>× 10 <sup>20</sup> POT |
|-------|---------------------------|-------------------------------------------|
| LE-10 | -10                       | 390                                       |
| рМЕ   | -100                      | 970                                       |
| pHE   | -250                      | 1340                                      |

#### Events expected in fiducial volume



### **The MINOS Calibration Detector**

• Help understand energy response to reconstruct  $E_{\nu}$ 

 $E_v = p_\mu + E_{had}$ 

- Measured in a CERN test beam with a "mini-Minos"
  - operated in both Near and Far configurations
  - Study e/µ/hadron response of detector
  - Test MC simulation of low energy interactions
  - Provides absolute energy scale for calibration





#### Single particle energy resolution



# **Hadron Production Tuning**

- Parameterize Fluka2005 prediction as a function of  $x_F$  and  $p_T$
- Perform fit which reweights neutrino parent pion  $x_F$  and  $p_T$  to improve data/MC agreement
- Horn focusing, beam misalignments included as nuisance parameters in fits
- Small changes in x-section, neutrino energy scale, NC background also allowed





# **Other Extrapolation Methods**

3 other extrapolation methods were applied to the data: **NDfit**: 1D fit to  $E_v$  distribution in ND data used to determine systematic parameters and reweight FD MC accordingly

- 2D Grid Fit: 2D fit to (E<sub>ν</sub>, y) grid in ND data used to determine systematic parameters and reweight FD MC accordingly
- **F/N Ratio**: Uses Far/Near spectrum ratio from MC to scale the events in each ND energy bin into a number of FD events in that same bin



• The 4 extrapolation methods investigated give consistent predictions and are robust to different types of systematics.

#### **Breakdown of FD Selection**

| Cut                                        | Events | Efficiency |
|--------------------------------------------|--------|------------|
| All Events in fiducial volume              | 438    | -          |
| Events with a track                        | 384    | 87.7%      |
| Track quality cuts                         | 365    | 95.1%      |
| PID cut (CC-like)                          | 267    | 73.2%      |
| Track charge sign cut<br>(negative μ only) | 244    | 91.4%      |
| Reconstructed energy <30 GeV               | 215    | 88.1%      |



# **Systematic Shifts**

| Preliminary Uncertainty          | Shift in ∆m²<br>(10 <sup>-3</sup> eV²) | Shift in<br>sin²2θ |
|----------------------------------|----------------------------------------|--------------------|
| Near/Far normalization ±4%       | 0.050                                  | 0.005              |
| Muon energy scale ±2%            | 0.033                                  | 0.003              |
| Relative shower energy scale ±2% | 0.050                                  | 0.005              |
| Absolute shower energy scale ±6% | 0.033                                  | 0.005              |
| Intranuclear re-scattering ±10%  | 0.050                                  | 0.048              |
| NC contamination ±50%            | 0.090                                  | 0.050              |
| Total (sum in quadrature)        | 0.13                                   | 0.07               |
| Statistical error (data)         | 0.36                                   | 0.12               |

### **Near Detector Spill**

Multiple events in ND per Main Injector spill

- Over 1x10<sup>7</sup> fiducial events collected
- Events are separated using topology and timing
  - Color in display indicates time
    - Blue hits are early, red are late
- No rate effects observed
  - Linear increase in event rate with beam intensity







06/09/2006

# **Far Detector Event**



- Typical FD  $v_{\mu}$  CC event
  - Spatial information used for track reconstruction
  - Timing information used in atmospheric v analysis to distinguish up/down events
  - Charge information used for calorimetry