DCBA (Drift Chamber Beta-ray Analyzer) inverted ABCD

DCBA collaboration

N. Ishihara, Y. Kato, T. Inagaki, T. Ohama, S. Takeda, Y. Yamada (KEK)N. Ukishima, Y. Teramoto (OCU), Y. Morishima, I. Nakano (OU)S. Kitamura (TMU), Y. Sakamoto (TGU), Y. Nagasaka (HIT)N. Tamura (NU), K. Tanaka (BTE), R. Ito (ZTJ)

Contents

- 1. DCBA-T2 (2nd test apparatus)
- 2. Electron events from ²⁰⁷Bi
- 3. Background electron events
- 4. Energy spectra in DCBA-T2
- 5. Future plan DCBA-F
- 6. Summary

Beta-ray Analyzer $^{150}Nd \rightarrow ^{150}Sm + 2e^{-1}$ $p\cos\lambda = 0.3rB$, $T = (p^2 + m_e^2)^{1/2} - m_e$ p (MeV/c): momentum, r (cm): radius, λ : pitch angle *B* (kG): magnetic field, m_e (MeV/c²): electron mass

DCBA-T2 (under construction)

• Drift chamber Source	Multi-track capability Nd_2O_3 (40 mg/cm ²)		
Sensitive vol	$(^{150}Nd = 0.008 mol)$ 18(X) × 26(X) × 26(Z) cm ³		
Signal readout	Flash ADC		
X-position	Drift velocity × Drift time $(\sigma_{\rm v} \sim 0.5 \text{ mm})$		
Y-position	Anode wire position		
Z-position	$(\sigma_{\rm Y} \sim 0.5 \text{ mm})$ Pickup wire position $(\sigma_{\rm Z} \sim 0.5 \text{ mm})$		
• Magnet	Solenoid coil + Flux return yoke		
Magnetic field Uniform Vol.	0.8 kG (Max.) 40 dia. x 70 cm ³ ($\delta B/B_0 < 1\%$)		
• Veto-counters	Scintillation counters		

N. Ishihara

NDM06, Paris, Sep.3-9, 2006

3-D raw data plot of cosmic ray

Position resolution of DCBA-T2

N. Ishihara

NDM06, Paris, Sep.3-9, 2006

Electrons from ²⁰⁷Bi

$$T = 458 \text{ keV}$$

T = 971 keV

7

N. Ishihara

Background electron events

NDM06, Paris, Sep.3-9, 2006

Energy spectra of electrons from ²⁰⁷Bi and background in DCBA-T2

9

Energy spectrum in the forward region of source point

NDM06, Paris, Sep.3-9, 2006

Future plan DCBA-F

Source plate: 84 m²/module Thickness: 15 (40) mg/cm² Weight: 12.6 (33) kg/module 10 module \rightarrow 126 (330) kg

 $< m_{v} > \approx 0.4 \,\text{eV}$ for natural Nd/module.year

 $< m_v > \approx 0.1 \text{ eV}$ for 90% ¹⁵⁰Nd/module.year

Anode wire: 10720/module Pickup wire: 13160/module

N. Ishihara

NDM06, Paris, Sep.3-9, 2006

11

NDM06, Paris, Sep.3-9, 2006

Half-life and Effective Mass Sensitivities of DCBA for ¹⁵⁰Nd, ¹⁰⁰Mo and ⁸²Se (Tentative)

	Natural Nd (5.6% ¹⁵⁰ Nd)	¹⁵⁰ Nd (80% enr.)	100 Mo (90% enr.) (⁸² Se (90% enr.)
DCBA Amount (mol) (600 kg : 20 modules of	$190 f 40 mg/cm^2$	2700	5400	6600
$T^{1/2}_{0v}$ sens. (yr) $< m_v > sens. (eV)$	9×10^{24} 0.06	1×10^{26} 0.02	$5 2 \times 10^2 0.07$	3×10^{26} 0.04

Nucl. Matrix Element: A. Staudt et al. Europhys. Lett. 13 (1) (1990) 31

Summary

1. Kinetic energy of an electron in the region of 200 - 2500 keV has been obtained by DCBA-T2 from the momentum measurement in a uniform magnetic field.

Events from a point source of ²⁰⁷Bi show two peaks.
One peak is around 500 keV and the other is around 950 keV.
They are consistent with i.c.e. energies.

3. Background events show a peak around 800 keV. More events are required to investigate the origin of background events.

4. Energy resolution of DCBA-T2 is under study now.

5. It is expected that 20 modules of DCBA-F will have the effective neutrino mass sensitivity of 0.05 eV.

6. Everybody is welcome for the future project.