

Objectives

Status on the main R&D tasks

Christine Marquet - CENBG

NDM06- Paris- September 2006

SuperNEMO project collaboration

<u>NEMO3 collaboration + new labs</u> ~ 60 physicists, 11 countries, 27 laboratories

SuperNEMO: A tracko-calo detector to reach $\langle m_v \rangle \leq 50 \text{meV}$

Following NEMO3 technical choices and knowledge...:

<u>Direct signature of the 2 electrons</u>

Advantages:

- **3 observables:** total deposited energy - individual energy
 - angular corelation
- Possibility to measure various isotopes

Possible SuperNEMO design

Planar and modular design: ~ 100 kg of enriched isotopes (20 modules × 5 kg)

From NEMO3 to SuperNEMO... objectives

$$T_{1/2}(\beta\beta 0\nu) > \ln 2 \times \frac{N_{avo}}{A} \times \frac{M \times \varepsilon \times T_{obs}}{N_{exclu}}$$

NEMO-3		SuperNEMO	
¹⁰⁰ Mo	Choice of isotope	¹⁵⁰ Nd or ⁸² Se	
7 kg	Isotope mass M	100-200 kg	
8 %	Efficiency ε (ββ0ν)	~ 30 %	
208 Tl < 20 µBq/kg 214 Bi < 300 µBq/kg	$N_{exclu} = f(BKG)$ Internal contaminations ²⁰⁸ Tl and ²¹⁴ Bi in the $\beta\beta$ foil	208Tl < 2 µBq/kg (<i>If</i> 82 Se: 214 Bi < 10 µBq/kg)	
8% @3MeV	Energy resolution FWHM(calorimeter)	4% @3MeV	
$T_{1/2}(\beta\beta0\nu) > 2.\ 10^{24} y$ <m<sub>ν> < 0.3 – 1.3 eV</m<sub>	SENSITIVITY	$T_{1/2}(\beta\beta0\nu) > 10^{26} y$ $< m_{\nu} > < 50 meV$	
Main R&D tasks:1) ββ source production2) Radioprurity3) Energy resolution+ Tracking, Electronics, DAQ, Software, Mechanics, Theory			

SuperNEMO $\beta\beta$ source: ¹⁵⁰Nd or ⁸²Se

$Q_{\beta\beta}=3.367 \text{ MeV} \qquad Q_{\beta\beta}=2.995 \text{ MeV} \\ T_{2v}=10^{19} \text{ y} \qquad T_{2v}=9 \ 10^{19} \text{ y} \\ \hline T_{2v}=9 \ 10^{19} \text{ y} \\ \hline 0.22 \text{ evts }/100 \text{ kg.y} & 0.27 \text{ evts }/100 \text{ kg.y} \\ \hline 0.22 \text{ evts }/100 \text{ kg.y} & 0.27 \text{ evts }/100 \text{ kg.y} \\ \hline 0.20 \text{ evts }/100 \text{ kg.y} & (10 \ \mu\text{Bq/kg} \\ 208 \text{ T1} & <2 \ \mu\text{Bq/kg} & <2 \ \mu\text{Bq/kg} \\ \hline 0.20 \text{ evts }/200 \text{ Kg} & <2 \ \mu\text{Bq/kg} \\ \hline 0.20 \text{ evts }/200 \text{ Kg} & <2 \ \mu\text{Bq/kg} \\ \hline 0.20 \text{ evts }/200 \text{ Kg} & <2 \ \mu\text{Bq/kg} \\ \hline 0.20 \text{ evts }/200 \text{ Kg} & <2 \ \mu\text{Bq/kg} \\ \hline 0.20 \text{ evts }/200 ev$		¹⁵⁰ Nd	⁸² Se
Backgrounds • ββ2ν • Contaminations $\begin{cases} 2^{14}\text{Bi} \\ 208\text{TI} \end{cases}$ $\stackrel{<300 \mu\text{Bq/kg} (=\text{NEMO3})}{< 2 \mu\text{Bq/kg}}$ $\stackrel{<10 \mu\text{Bq/kg}}{< 2 \mu\text{Bq/kg}}$ $\stackrel{<20 \mu\text{Bq/kg}}{< 2 \mu\text{Bq/kg}}$ $\stackrel{<20 \mu\text{Bq/kg}}{< 2 \mu\text{Bq/kg}}$ $\stackrel{<20 \mu\text{Bq/kg}}{< 2 \mu\text{Bq/kg}}$ $\stackrel{<20 \mu\text{Bq/kg}}{< 2 \mu\text{Bq/kg}}$ $\stackrel{<}{=} G_{0v} M_{0v}^2 \langle m_v \rangle^2$ $\stackrel{<}{=} G_{0v} = 8.0 \ 10^{-25} \ y^{-1} \ eV^{-2}$ $\stackrel{<}{=} G_{0v} = 1.08 \ 10^{-25} \ y^{-1} \ eV^{-2}$ $\stackrel{<}{=} \frac{150 \text{Nd}}{\text{The best choice for :}}$ $\stackrel{=}{=} - \text{Phase space}$		$Q_{\beta\beta}$ =3.367 MeV $T_{2\nu}$ = 10 ¹⁹ y	$Q_{\beta\beta}$ =2.995 MeV $T_{2\nu}$ = 9 10 ¹⁹ y
• Contaminations in $\beta\beta$ sources $\begin{cases} 2^{14}\text{Bi} \\ 2^{08}\text{TI} \end{cases} \xrightarrow{<300 \mu\text{Bq/kg (=NEMO3)}} & <10 \mu\text{Bq/kg} \\ <2 \mu\text{Bq/kg} \end{cases} & <2 \mu\text{Bq/kg} \\ = 2 \mu\text{Bq/kg} \end{cases} = G_{0v} M_{0v}^2 \langle m_v \rangle^2 \qquad \qquad$	<u>Backgrounds</u> • ββ2ν	0.22 evts /100kg.y	0.27 evts /100kg.y
$\frac{150 \text{ Nd}}{1000 \text{ M}_{000}^{2} \text{ M}_{00}^{2} \text{ M}_{000}^{2} \text{ M}_{00}$	• Contaminations $\begin{cases} 214 Bi \\ 208 Tl \end{cases}$	 <300 μBq/kg (=NEMO3) < 2 μBq/kg	< 10 μBq/kg < 2 μBq/kg
<pre> ⁸ 7 6 5 4 4 3 </pre> 150Nd The best choice for : - Phase space Dechage when the second seco	$\frac{\text{ase space factor } \mathbf{G}_{0v}}{\sum_{v} = \mathbf{G}_{0v} M_{0v}^{2} \langle \mathbf{m}_{v} \rangle^{2}}$	$G_{0v} = 8.0 \ 10^{-25} \ y^{-1} \ eV^{-2}$	$G_{0v} = 1.08 \ 10^{-25} \ y^{-1} \ eV^{-2}$
$\begin{bmatrix} -Backgrounds \\ -and also SUSY \beta \beta 0v, excited states \end{bmatrix}$	8 7 6 5 4 3 2 1	 150Nd The best choice Phase space Background and also SU 	ce for : ls JSY ββ0v, excited states β

¹⁵⁰Nd production: The Laser Method (AVLIS)

AVLIS: Atomic Vapor Laser Isotope Separation

Selective photoionization based on : isotope shifts in the atomic absorption optical spectra U + 3 selective photons $\rightarrow {}^{235}U^+ + e^-$

¹⁵⁰Nd production: possibility in France?

2000-2003: R&D with <u>MENPHIS</u> demonstrator facility (CEA/Pierrelatte - France)

Main results for the process :

- 204 kg of enriched uranium at ≈ 2.5 % mean (predicted) value of enrichment
- Production raise: few kg/h for U

~2000kg natural U evaporated ~400 assay measurements

Restart MENPHIS... for ¹⁵⁰**Nd ?**

- Technicaly possible: Nd has been already enriched at 60% ¹⁵⁰Nd
- Raisonable production raise: few weeks for 100 kg
- Several interested experiments: SuperNEMO, SNO+, MOON, DCBA (Letter of Interest July 2006)

BiPo detector: Measurement of materials radiopurety

• BiPo detector: a dedicated detector to measure:

- $-^{208}Tl < 2 \mu Bq/kg \& ^{214}Bi < 10 \mu Bq/kg$
- for $12m^2$ thin foils = $\beta\beta$ foils just before introduction in SuperNEMO

- 5 kg/month

• Based on: Bi-Po effect :

BiPo detector : an ultra low background detector

BiPo1 prototype:

Background measurement: - Random coincidence

- scintillator surface contamination in ²¹²Bi

Installed in October 2006 In LSC :Canfranc laboratory

Calorimeter R&D

R&D calorimeter :

- to reach 4% (FWHM) at 3 MeV (7% at 1 MeV)
- Optimise the number of channels, the detector geometry...

Scintillators

=> ligth yield, homogeneity Plastic scintillators - Collaboration Karkhov, Dubna (PICS) (Improvement Polystyrene, Dev. Polyvinylxylène ?) Liquid scintillators Wrappring tests : chimical treatement (karkhov)

Tests realised with e- spectrometer

¥ 10 • Samples from Kharkov **Photomultipliers** ▲ Samples from JINR Dubna Resolution (FWHM) at 1 MeV Sample from Bicron \Rightarrow Quantum efficiency, collection efficiency Scintillator blocks 6 x 6 x 2 cm³ PMT XP5312B (Photonis) \Rightarrow Low radioactivity PHOTONIS/IN2P3 agreement Tests with Hamamatsu and ETL PMT (US & UK) **Geometry** FWHM @ 1 MeV ~ 7% => Compacity +nb of channels + light collection blocs shape Scintillator references Separation e- calorimeter and y tagging

SuperNEMO project is the next-generation $\beta\beta0\nu$ Tracko-Calo experiment with a sensitivity on $\langle m_{\nu} \rangle \leq 50$ meV

R&D has started 1 year ago (for 3 years):

- - A possibility to produce large mass of ¹⁵⁰Nd ?
 - ⁸²Se enrichment and purification in progress (funded by ILIAS)
- New detector "BiPo" to measure ²¹⁴Bi and ²⁰⁸Tl ultra-low activities (prototype under construction – funded by ANR-France)
- - FWHM=4% (@3MeV) already reached for little size scintillators
 - Agreements for R&D with PM and scintillator production factories

First SuperNEMO module could be running in 2010 Full detector could operate in 2012