The Majorana Neutrinoless Double-Beta Decay Experiment

Jason Detwiler University of Washington

> NDM '06 September 4, 2006 Paris, France

The Majorana Collaboration

Brown University, Providence, Rhode Island Michael Attisha, Rick Gaitskell, John-Paul Thompson

Institute for Theoretical and Experimental Physics, Moscow, Russia Alexander Barabash, Sergey Konovalov, Igor Vanushin, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia

Viktor Brudanin, Slava Egorov, K. Gusey, S. Katulina, Oleg Kochetov, M. Shirchenko, Yu. Shitov, V. Timkin, T. Vvlov, E. Yakushev, Yu. Yurkowski

Lawrence Berkeley National Laboratory, Berkeley, California

Yuen-Dat Chan, Mario Cromaz, Paul Fallon, Brian Fujikawa, Reyco Henning, Donna Hurley, Kevin Lesko, Paul Luke, Augusto O. Macchiavelli, Akbar Mokhtarani, Alan Poon, Gersende Prior, Al Smith, Craig Tull

Lawrence Livermore National Laboratory, Livermore, California Dave Campbell, Kai Vetter

Los Alamos National Laboratory, Los Alamos, New Mexico

Mark Boulay, Steven Elliott, Gerry Garvey, Victor M. Gehman, Andrew Green, Andrew Hime, Bill Louis, Gordon McGregor, Dongming Mei, Geoffrey Mills, Kieth Rielage, Larry Rodriguez, Richard Schirato, Laura Stonehill, Richard Van de Water, Hywel White, Jan Wouters

Oak Ridge National Laboratory, Oak Ridge, Tennessee

Cyrus Baktash, Jim Beene, Fred Bertrand, Thomas V. Cianciolo, David Radford, Krzysztof Rykaczewski, Chang-Hong Yu

Osaka University, Osaka, Japan

Hiroyasu Ejiri, Ryuta Hazama, Hidehito Nakamura, Masaharu Nomachi

Pacific Northwest National Laboratory, Richland, Washington

Craig Aalseth, Ronald Brodzinski, James Ely, Tom Farmer, Jim Fast, Eric Hoppe, Brian Hyronimus, David Jordan, Jeremy Kephart, Richard T. Kouzes, Harry Miley, John Orrell, Jim Reeves, Robert Runkle, Bob Schenter, John Smart, Ray Warner, Glen Warren

> Queen's University, Kingston, Ontario Fraser Duncan, Aksel Hallin, Art McDonald

Triangle Universities Nuclear Laboratory, Durham, North Carolina and Physics Departments at Duke University and North Carolina State University Henning Back, James Esterline, Mary Kidd, Werner Tornow, Albert Young

> University of Chicago, Chicago, Illinois Juan Collar

University of South Carolina, Columbia, South Carolina Frank Avignone, Richard Creswick, Horatio A. Farach, Todd Hossbach, George King

University of Tennessee, Knoxville, Tennessee William Bugg, Tom Handler, Yuri Efremenko, Brandon White

University of Washington, Seattle, Washington

John Amsbaugh, Jason Detwiler, Peter J. Doe, Alejandro Garcia, Mark Howe, Rob Johnson, Kareem Kazkaz, Michael Marino, Sean McGee, R. G. Hamish Robertson, Alexis Schubert, Brent VanDevender, John F. Wilkerson

UNL

OAK RIDGE NATIONAL LABORATORY

SOUTH CAROLINA.

Pacific Northwest National Laboratory

THE UNIVERSITY OF CHICAGO

[1] F. Simkovic et al., Phys. Rev. C 60, 055502 (1999).

[2] V.A. Rodin et al., Nucl. Phys. A 766, p. 107 (2006).

[3] C.E. Aalseth *et al.*, Nucl. Phys. B Proc. Supp. 48, 223 (1996); F.T. Avignone *et al.*, Phys. Lett.
 B 256, 559 (1991); H.V. Klapdor-Kleingrothaus *et al.*, Eur. Phys. J. A 12, 147 (2001).

Germanium Detectors

- Source = Detector
- Intrinsically high purity, elemental Ge
- Demonstrated ability to enrich to 86% ⁷⁶Ge
- 0.16% energy resolution at 2039 keV
- Well-understood technologies
 - Commercial Ge diodes
 - Large Ge arrays (GRETINA, Gammasphere)
- Powerful background rejection
- Best limits on $0 \vee \beta \beta$: $T_{1/2}^{0\nu} > 1.9 \times 10^{25}$ y (90% CL) [1] [1] H.V. Klapdor-Kleingrothaus *et al.*, Eur. Phys. J.A **12**, p. 147 (2001).

Majorana Science Goals

- Probe the quasi-degenerate neutrino mass region above 100 meV
- Demonstrate background levels that would justify scaling up to a 1 ton or larger experiment
- If the Klapdor-Kleingrothaus claimed observation of $0\nu\beta\beta$ in ⁷⁶Ge is confirmed, do a precision measurement of the decay rate (20%)

Majorana Overview

- Modules of 57 close-packed, I.I kg, segmented n-type HPGe detectors enriched to 86% ⁷⁶Ge
- Independent cryostats made of ultra-clean electroformed Cu
- Low background passive lead + electroformed
 Cu shield and 4π active veto
- Located deep underground (4500-6000 mwe)

60 kg Modules

Passive and Active Shielding

Backgrounds

• Intrinsic

- Natural radioactivity (U,Th, Rn)
- Anthropogenic (esp. surface contamination)
- $2\nu\beta\beta$ (high resolution \rightarrow negligible)
- Cosmogenic
 - Primary cosmic rays
 - Spallation neutrons
 - Cosmogenic radioisotopes

Background Goal: I event / ton-year in 4 keV ROI

Ultrapure Materials: Electroformed Copper

- Semiconductor-grade acids, recrystallized CuSO₄, high-purity copper stock
- Baths circulated with microfiltration, barium scavenge; cover gas
- Active plating manipulation, surface machining, cleaning, and passivation

- 232 Th < I μ Bq/kg
- Recently improved bath chemistry: requires less surface finishing
- Improved starting stock quality and handling

Background Rejection: Granularity

Simultaneous hits in >1 detector cannot be $0\nu\beta\beta$

Effective for:

- High energy external
 γ's, e.g. ²⁰⁸Tl and ²¹⁴Bi
 (2x-5x reduction)
- Some neutrons
- Muons (10x)

Background Rejection: Segmentation

Simultaneous hits in >1 segment cannot be $0\nu\beta\beta$

- Rejects multi-site events distributed in z and ϕ
- Effective against internal γ's (2x-5x reduction)
- Requires additional electronics and small parts

Background Rejection: Pulse Shape Discrimination

• Requires high bandwidth digitization

Cosmogenic Backgrounds

D.-M. Mei and A. Hime, Phys. Rev. D 73, 053004 (2006).

Surface Contamination Simulations

- Generate decays uniformly on all component surfaces
- Extract cleanliness / QC requirements, feedback into design considerations

Materials Specifications

Location	Purity Issue	Exposure	Activation Rate	Equiv. Achieved Assay	Reference
Germanium	68 Ge, 60 Co	100 d	$1~{\rm atom/kg/day}$		[Avi92]
		Component Mass	Target Purity		
Inner	²⁰⁸ Tl in Cu	2 kg	$0.3~\mu \rm Bq/kg$	$0.7\text{-}1.3\;\mu\mathrm{Bq/kg}$	Current work also [Arp02]
Mount	$^{214}\mathrm{Bi}$ in Cu	_	$1.0 \ \mu Bq/kg$		
Cryostat	$^{210}\mathrm{Tl}$ in Cu	38 kg	$0.1~\mu Bq/kg$	$0.7\text{-}1.3~\mu\mathrm{Bq/kg}$	Current work also [Arp02]
	$^{214}\mathrm{Bi}$ in Cu	Ŭ	$0.3~\mu Bq/kg$		
Cu Shield	²⁰⁸ Tl in Cu	310 kg	$0.1~\mu \rm Bq/kg$	$0.7\text{-}1.3~\mu\mathrm{Bq/kg}$	Current work also [Arp02]
	214 Bi in Cu		$0.3~\mu \mathrm{Bq/kg}$		
Small Parts	208 Tl in Cu	1 g/crystal	$30 \ \mu Bq/kg$	$1000 \ \mu Bq/kg$	
	$^{214}\mathrm{Bi}$ in Cu	i g/ciystai	$100 \ \mu Bq/kg$		

Background Summary

Background Source		Rates for Important Isotopes				Total Est. Background	
		68.01	cnts/F	ROI/t-y		cnts/ROI/t-y	
	~	^{co} Ge		Co			-
Germanium	Gross:	2.54	1.	22		0.00	Crystals
	Net:	0.02	0.	06	60 -	0.08	are clean
		²⁰⁸ Tl	214	'Bi	⁶⁰ Co		
\mathbf{Inner}	Gross:	0.12	0.	03	0.26		
Mount	Net:	0.01	0.	00	0.00	0.01	
Consected	Gross:	0.49	0.	48	0.58		
Cryostat	Net:	0.14	0.	12	0.00	0.26	Dominated
Copper	Gross:	1.39	0.	55	0.02		by ²³² Th
\mathbf{Shield}	Net:	0.39	0.	11	0.00	0.50	in Cu
Small	Gross:	0.45	0.	68	0.34		
Parts	Net:	0.05	0.	17	0.00	0.22	_
Surface	All					0.26	Requires
Alphas	surfaces:					0.30	
		muons	cosmic activity	gammas	(lpha,n)		
$\mathbf{External}$	Gross:	0.03	1.50	0.05	0.06		Must go
Sources	Net:	0.003	0.21	0.05	0.06	0.32	deep
2 uetaeta						< 0.01	
Solar ν						0.01	
Atm. ν						0.02	
	TOTAL SUM 1.75						

Majorana Sensitivity

Schedule (assuming two modules)

Our schedule is constrained by the requirement to follow the DOE "413" capital acquisition process.

Summary

- Reference design based on demonstrated, scalable technology
- Modular approach, emphasis on fast deployment of first 60 kg module
- Goal: ~150 times lower background (after analysis cuts) compared to previous ⁷⁶Ge experiments
- 3 years with M60F can achieve 90% CL sensitivity to a $0\nu\beta\beta$ lifetime of 2.1 x 10^{26} y (m_{$\beta\beta$} ~ 200 meV)
- Received NuSAG recommendation in 2005
- In November 2005 approved by DOE NP to proceed with R&D and Conceptual Design activities (tied to DOE CD-0 for double-beta decay)
- Extensive collaboration experience with $\beta\beta$ -decay experiments and low background, large neutrino detectors
- Good communication and cooperation with GERDA (esp. joint simulation effort "MaGe"); Lol to combine for a future 1 ton scale experiment

Iterative Design Process

Sensitivity to KKDC Signal

H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B **586**, p. 198 (2004).

Sensitivity to KKDC Signal

Where Are We in the Process?

- 2000-2001 NP Long-range plan
- Sept. 2001 Majorana Charter (7 institutions)
- Mar. 2002 Majorana Discussions with DOE NP
- Sept. 2003 White Paper & DOE NP discussions
- Nov. 2003 Office of Science 20 year Future Facilities
- Nov. 2004 APS Multidivisional Neutrino Study
- May 2005 NSAC NuSAG Review
- Sept. 2005 NuSAG Report "high-priority for funding
- Nov. 2005 DOE CD-0 for generic bb-decay
 - Permission to redirect DOE funds to R&D
- Mar. 2006 Successful External Panel Review
- Nov. 2006 DOE NP $\beta\beta$ -decay Review

Backgrounds Compared to Other Experiments

Expt EXO200	Isotope ¹³⁶ Xe	Active Mass (kg) 160	Backgrounds (after cuts) cnt/kev/t-y 1.1	Backgrounds (after cuts) cnt/ROI/t-y 87.5	2.8s "ROI" width (keV) 79.2	Sigma (keV) 39.616	Eo (keV) 2476	Res. At the peak (FWHM) 3.77%	Backgrounds before cuts cnt/kev/t-y
CUORE	¹³⁰ Te	206	1	7	7	2.5	2533	0.20%	
GERDA	⁷⁶ Ge	34.3	2	8	4	1.386	2039	0.16%	
Majorana	⁷⁶ Ge	51.6	0.4	1.6	4	1.386	2039	0.16%	
KKDC	⁷⁶ Ge	11	60.00	240.00	4	1.386	2039	0.16%	113.00

Notes: KKDC - backgrounds BEFORE cuts is 113.00 cnt/kev/t-y from Physics Letters B 586 (2004) 198–212
KKDC - backgrounds after cuts come from Eur. Phys. J. A 12, 147–154 (2001). The data set included 35.5 kg y and the background index in the energy region between 2000– 2080 keV is (0.06±0.01) events/(kg y keV)

EXO gives resolution in sigma/E of 1.6%

CUORE gives sigma value of 2.5 (larger than calculated from their typical resolution, 2.15)

Comparison of Sensitivity and Timescales

		Active		2013 3 sigma	Exposure	Expt.	90% CL	Backgrounds (after cuts)
Expt	Isotope	Mass (kg)	Detector Mass	<m<sub>v> meV</m<sub>	in 2013	Start	<m<sub>v> meV</m<sub>	cnt/kev/t-y
EXO200	¹³⁶ Xe	160	200 Kg (80% enriched)	260	800	2008	220	1.1
CUORE	¹³⁰ Te	206	750 kg (34.1% nat)	240	618	2010		1
GERDA	⁷⁶ Ge	34.3	40 kg (86% enriched)	330	171.5	2008	230	2
Majorana	⁷⁶ Ge	51.6	60 kg (86% enriched)	300	154.8	2010	200	0.4
KKDC	⁷⁶ Ge		60 kg (86% enriched)					60.00