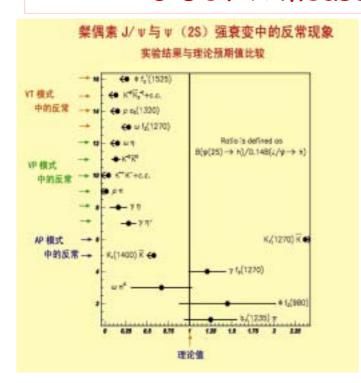
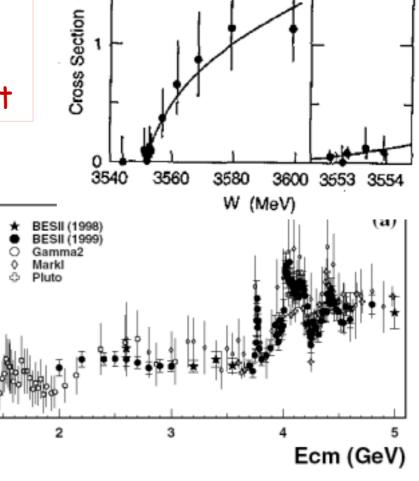
Recent BESII results and BESIII status

Changzheng YUAN IHEP, Beijing (and BES Collab.)

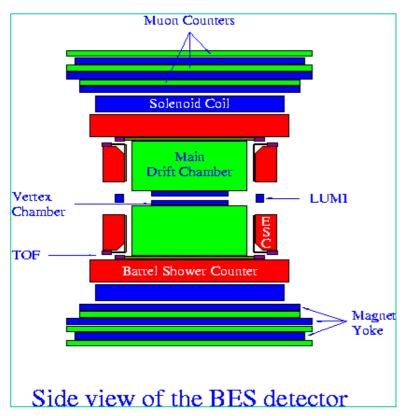
29 Aug. 2005 LAL, Orsay, France

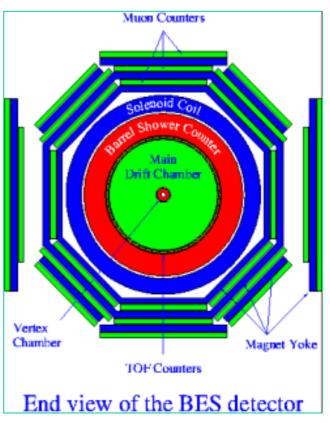

The Beijing Electron Positron Collider



A bit of history of BES physics

R Value


- > 1989-1995: BESI
 - \checkmark τ mass measurement
 - $\checkmark \psi'$ and χ_{CJ} study
- > 1996-2004: BESII
 - ✓ 2-5 GeV R measurement



 $m_{\tau} = 1776.96^{+0.18+0.25}_{-0.21-0.17} \text{ MeV}$

BESII Detector

 $\sigma_z = 5.5$ cm

BESII data samples

Data	BESII	CLEOc
J/ψ	58 M	
Ψ΄	14 M	3 M
Ψ"	33 pb ⁻¹	281 pb ⁻¹
Continuum	6.4 pb ⁻¹ (\sqrt{s} =3.65 GeV)	21 pb ⁻¹ (√s=3.67 GeV)

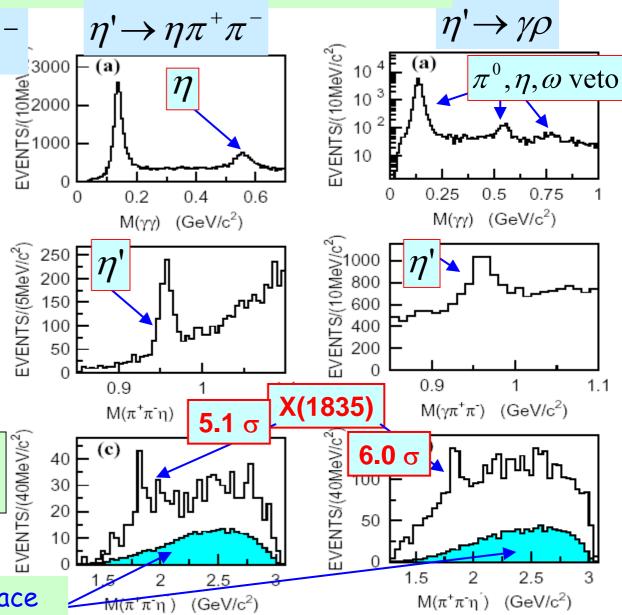
Performance	BESII	CLEOc		
σ р/р	1.7%/√1+p²	0.6%@p=1 <i>G</i> eV		
σ E/E	22% /√E	2.2%@E=1GeV		
PartID	dE/dx+TOF	dE/dx+RICH		
Coverage	80%	93%		

CLEOc results are included when available.

I will talk about -

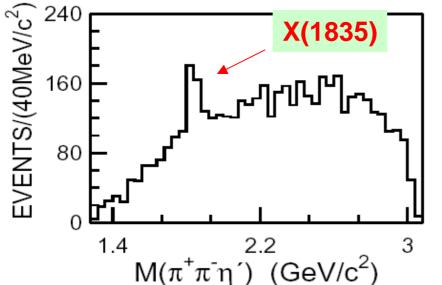
- New observations
- Light scalars Vector charmonia decay puzzle
- BESIII

Observation of X(1835)


 $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

Data selection:

- yy mass cut
- part ID
- kinematic fit
- η' mass cut


BES Preliminary hep-ex/0508025

Shape of phase space

Combine two η' decay modes

BES Preliminary hep-ex/0508025

Fit with BW + polynomial backgrounds, considering mass resolution.

Statistical significance: 7.7 σ

Mass res. ~ 13 MeV Efficiency ~ 4%

$$\sqrt{\frac{120}{80}}$$
 80 $\sqrt{\frac{120}{40}}$ $\sqrt{\frac{120}{40}}$ $\sqrt{\frac{1.4}{1.4}}$ $\sqrt{\frac{2.0}{\text{GeV/c}^2}}$ $\sqrt{\frac{2.6}{\text{M}(\pi^+\pi^-\eta^-)}}$ $\sqrt{\frac{1.4}{\text{GeV/c}^2}}$

$$N_{obs} = 264 \pm 54$$

 $M = 1833.7 \pm 6.1 \pm 2.7 \text{ MeV/c}^2$
 $\Gamma = 67.7 \pm 20.3 \pm 7.7 \text{ MeV/c}^2$

$$B(J/\psi \to \gamma X)B(X \to \pi^+\pi^-\eta') = (2.2 \pm 0.4 \pm 0.4) \times 10^{-4}$$

What is X(1835)?

BESpreliminary results:

 $M = 1833.7 \pm 6.1 \pm 2.7 \text{ MeV/c}^2$

 $\Gamma = 67.7 \pm 20.3 \pm 7.7 \text{ MeV/c}^2$

- > Mass comparable
- > Width different
- \triangleright No η₂→η'ππ yet
- >No JP from BES

η_2 (1870) DECAY MODES

Γ_1	$\eta\pi\pi$
Γ_2	$a_2(1320)\pi$
Γ_3	$f_2(1270)\eta$
Γ_4	$a_0(980)\pi$

 $\eta_2(1870)$

 $I^{G}(J^{PC}) = 0^{+}(2^{-})$

OMITTED FROM SUMMARY TABLE
Needs confirmation.

In PDG'05:

$\eta_2(1870)$ MASS

-					
	VALUE (MeV) 1842± 8 OUR	EVTS AVEDACE	DOCUMENT ID	TECN CHG	COMMENT
	1835±12	AVERAGE	BARBERIS	00B	450 pp →
	1844±13	1842	BARBERIS	00C	$p_f \eta \pi^+ \pi^- p_g$ 450 $p p \rightarrow$
	1840±25	1072	BARBERIS	97B OMEG	$p_f 4\pi p_s$ $450 p p \rightarrow$
	1875±20±35		ADOMEIT	96 CBAR 0	$p p 2(\pi^+\pi^-)$ $1.94 \overline{p} p \rightarrow \eta 3\pi^0$
	1881±32±40	26	KARCH	92 CBAL	$e^{+}e^{-}_{e^{+}e^{-}\eta\pi^{0}\pi^{0}}$
	 • • • We do no 	ot use the followin	g data for average	s, fits, limits, etc.	• • •
	1860+ 5+15		∆NISO\/ICH	ONE SPEC	104 70 22-0

$\eta_2(1870)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
225±14 OUR A 235±22	WERAGE	BARBERIS	00B			450 pp →
228±23	225	BARBERIS	00C			$p_f \eta \pi^+ \pi^- p_S$ $450 pp \rightarrow p_f 4\pi p_S$
200±40		BARBERIS	97B	OMEG		450 pp →
$200 \pm 25 \pm 45$		ADOMEIT	96	CBAR	0	$p \rho 2(\pi^+\pi^-)$ $1.94 \overline{\rho} \rho \rightarrow \eta 3\pi^0$
$221 \pm 92 \pm 44$	26	KARCH	92	CBAL		$e^{+}e^{-}_{e^{+}e^{-}\eta\pi^{0}\pi^{0}}$
$250\pm25^{+50}_{-35}$		ANISOVICH	00E	SPEC		$1.94 \; \overline{\rho} \rho \rightarrow \; \eta 3\pi^0$
170±40		BAI	99	BES		$J/\psi \rightarrow$

What is X(1835)?

Further States

In PDG'05:

TED FROM SUMMARY TABLE

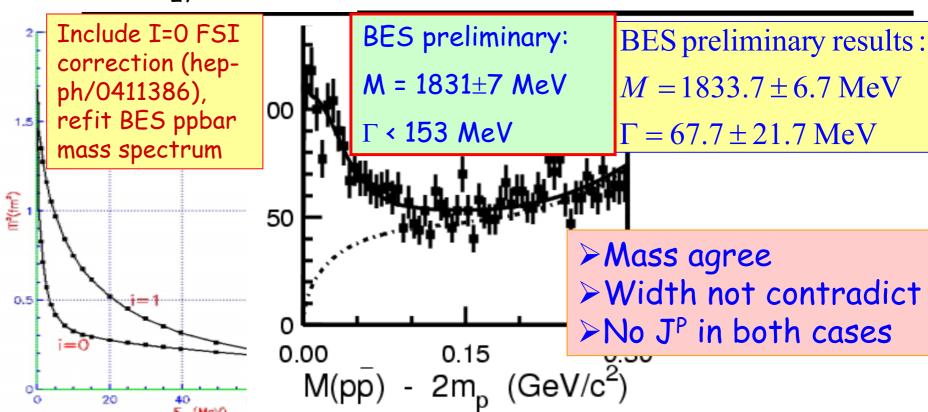
BES: PRL91, 22001 (2003) $I^{G}(J^{PC}) = ?^{?}(?^{??})$ X(1860)

MASS (MeV)

WIDTH (MeV)

DOCUMENT ID

TECN


COMMENT

1859₋₂₇

< 30

BAI

03F BES2 $J/\psi \rightarrow \gamma p \overline{p}$

What is X(1835)?

Further arguments support X(1835)=X(1859)=ppbar bound state:

- ppbar bound state couples to η'ππ large
 [G.J.Ding and M.L. Yan, PRC72, 015208 (2005)]
- ppbar bound state couples to ppbar strong
 [S.L. Zhu and C.S. Gao, hep-ph/0507050]

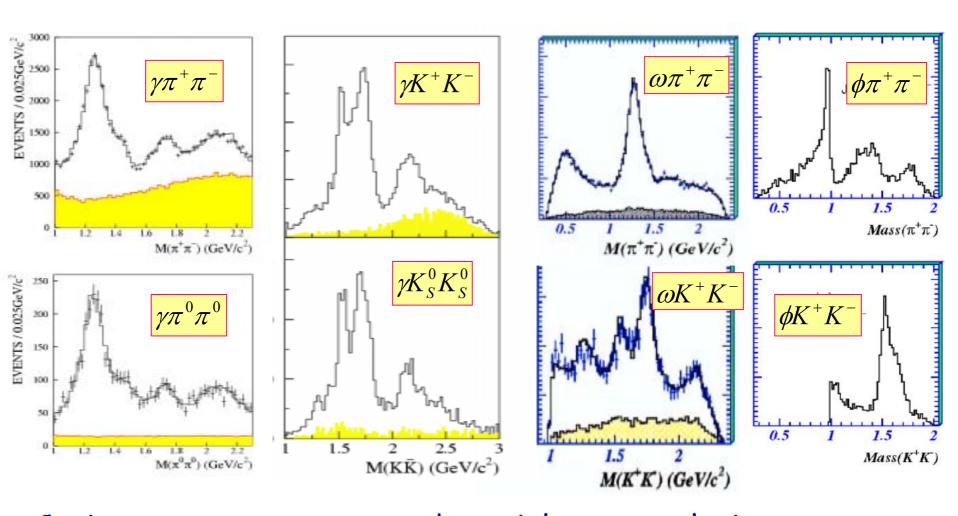
$$B(J/\psi \to \gamma X)B(X \to \pi^{+}\pi^{-}\eta') = (2.2 \pm 0.4 \pm 0.4) \times 10^{-4}$$

$$B(J/\psi \to \gamma X)B(X \to pp) = (7.0 \pm 0.4^{+1.9}_{-0.8}) \times 10^{-5}$$

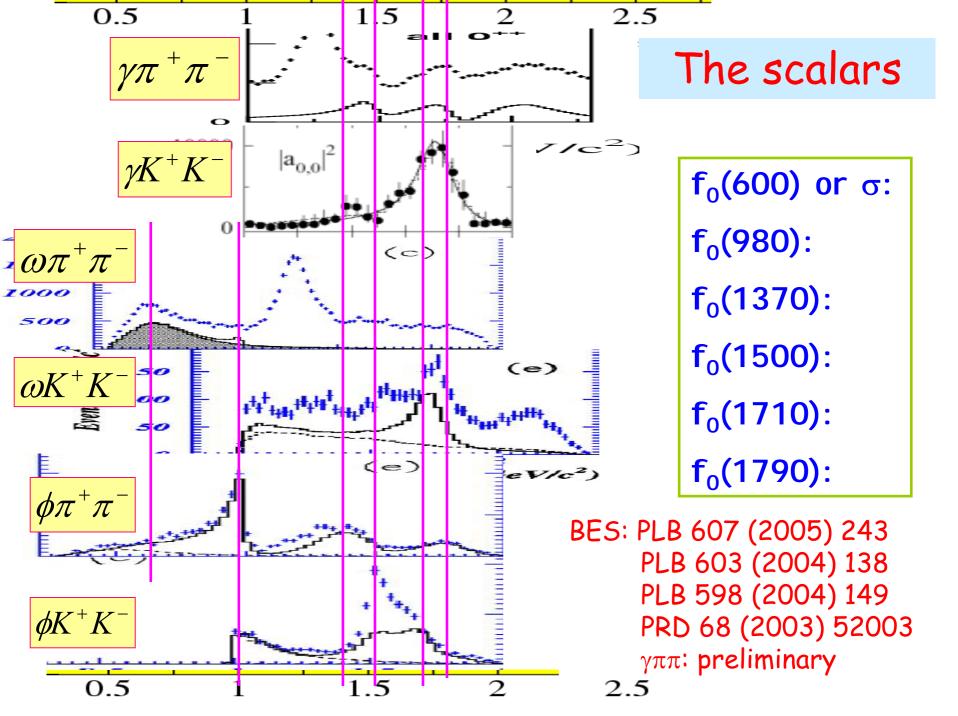
More data, more experiments, more information needed

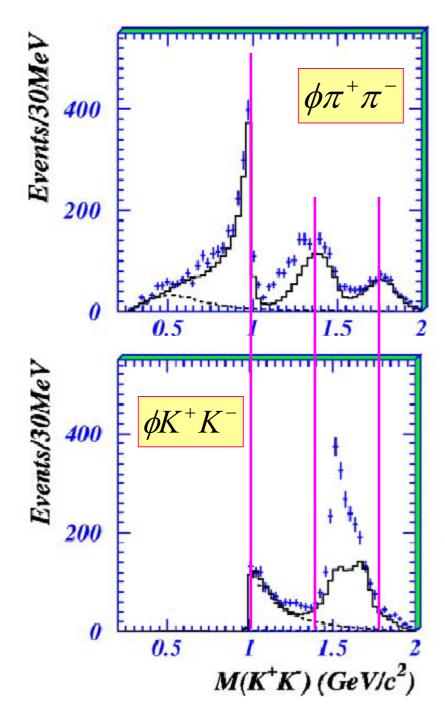
- mass and width, most importantly J^P
- more decay modes
- more theoretical calculations

Light scalars


- > Many scalars found in experiments
- > Do the sigma and kappa really exist?
- > Have we seen scalar glueball already?

I will show experimental results from BES --- (theorists (will) give interpretations)


- States in J/ψ decays
 - phi pi pi/phi K K
 - omega pi pi/omega K K
 - gamma pi pi/gamma K K
 - K K pi pi (the kappa)
- Sigma in $\psi' \rightarrow \pi^+\pi^- J/\psi$
- χ_c decays
 - Pair production of scalars


```
f_0(600) or \sigma
f_0(980)
f_0(1370)
f_0(1500)
f_0(1710)
f_0(1790)
```

The mass spectra of meson pairs

Copious structures --- need partial wave analysis to extract physics information: Covariant tensor/helicity amplitudes.

BES: PLB 607 (2005) 243

$f_0(980)$ parameters:

$$M = 965 \pm 8 \pm 6 \text{ MeV}$$
 $g_{\pi\pi} = 165 \pm 10 \pm 15 \text{ MeV}$
 $\frac{g_{KK}}{g_{\pi\pi}} = 4.21 \pm 0.25 \pm 0.21$

$f_0(1370)$ peak seen!

$$M = 1350 \pm 50 \,\mathrm{MeV}$$

$$\Gamma = 265 \pm 40 \,\mathrm{MeV}$$

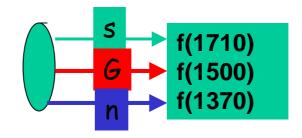
Observation of $f_0(1790)$?

$$M = 1790^{+40}_{-30} \text{ MeV}$$

$$\Gamma = 270^{+60}_{-30} \text{ MeV}$$

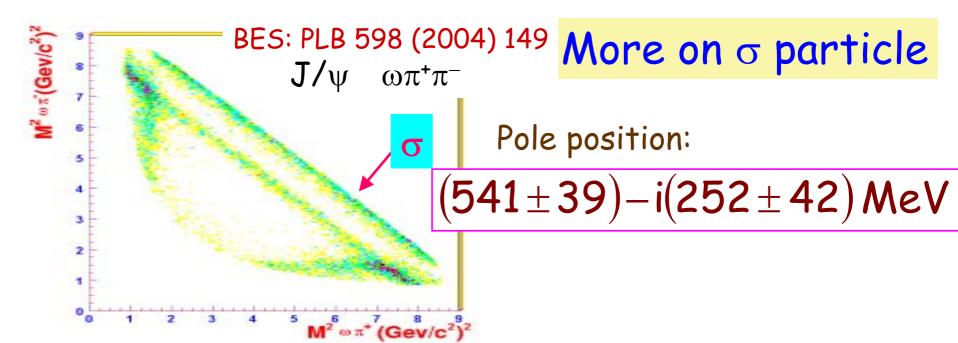
Couplings to γ , ω , and ϕ in J/ ψ decays, and decays to $\pi^+\pi^-$ and K+K- reveal its nature!

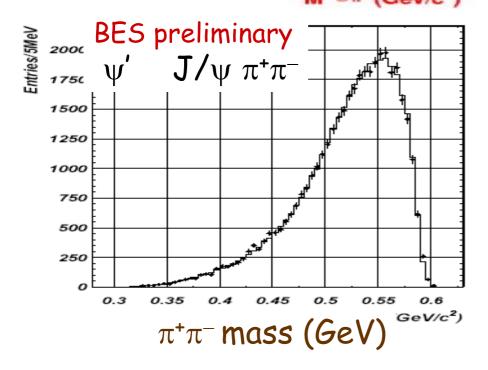
Scalar	B(φS, S→ππ)(10 ⁻⁴)	B(φS, S→KK)(10 ⁻⁴)
f ₀ (600)/σ	1.6±0.6	0.2±0.1
f ₀ (980)	5.4±0.9	4.5±0.8
f ₀ (1370)	4.3±1.1	0.3±0.3
f ₀ (1500)	1.7±0.8	0.8±0.5
f ₀ (1710)		2.0±0.7
f ₀ (1790)	6.2±1.4	1.6±0.8


$$B(J/\psi \to \chi f_0(1710) \to \chi K \overline{K}) = (9.6^{+3.5}_{-1.9}) \times 10^{-4}$$
$$B(J/\psi \to \omega f_0(1710) \to \omega K^+ K^-) = (6.6 \pm 1.3) \times 10^{-4}$$

$$\frac{BR(f_0(1710) \to \pi\pi)}{BR(f_0(1710) \to K\overline{K})} < 0.13 \quad @.95\%CL$$

Use of these information can be found in hep-ph/0504043 hep-ph/0508088 ...

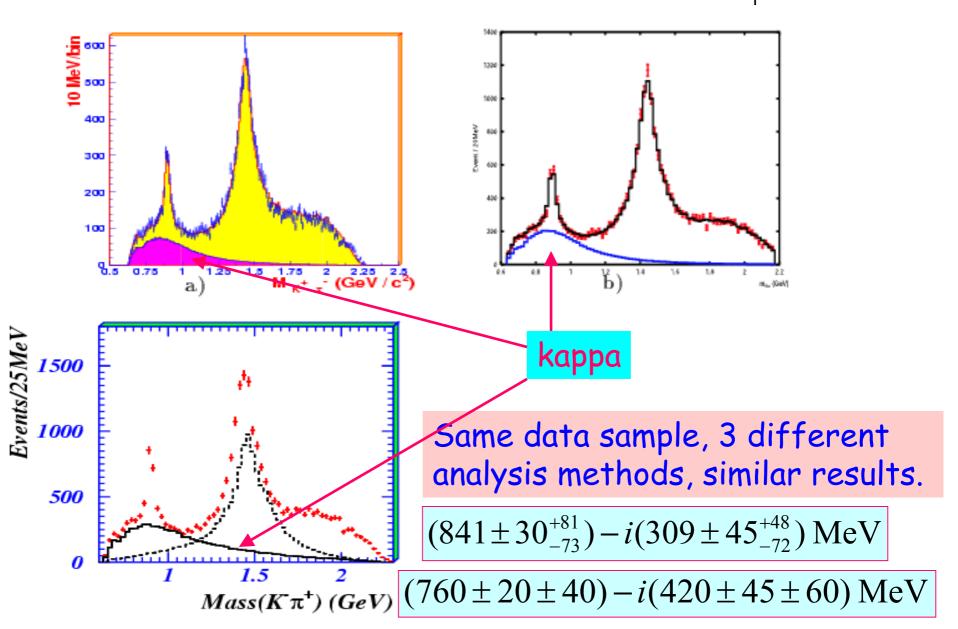

The mixing of the scalars


Idea available long time ago, most recent analysis in hep-ph/0504043 By Frank Close and Qiang Zhao

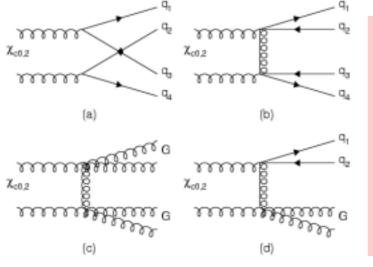
$$|f_0(1710)\rangle = 0.39|G\rangle + 0.91|s\bar{s}\rangle + 0.13|n\bar{n}\rangle$$

 $|f_0(1500)\rangle = -0.73|G\rangle + 0.37|s\bar{s}\rangle - 0.57|n\bar{n}\rangle$
 $|f_0(1370)\rangle = 0.56|G\rangle - 0.12|s\bar{s}\rangle - 0.82|n\bar{n}\rangle$,

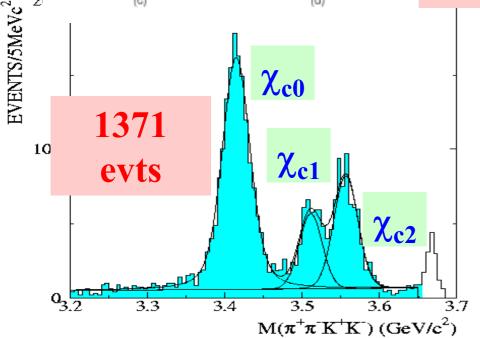
The mass of the scalar glueball is about 1.46-1.52 GeV in the same scheme.



Strong destructive interference between sigma and phase space, pole position similar to J/ψ result.

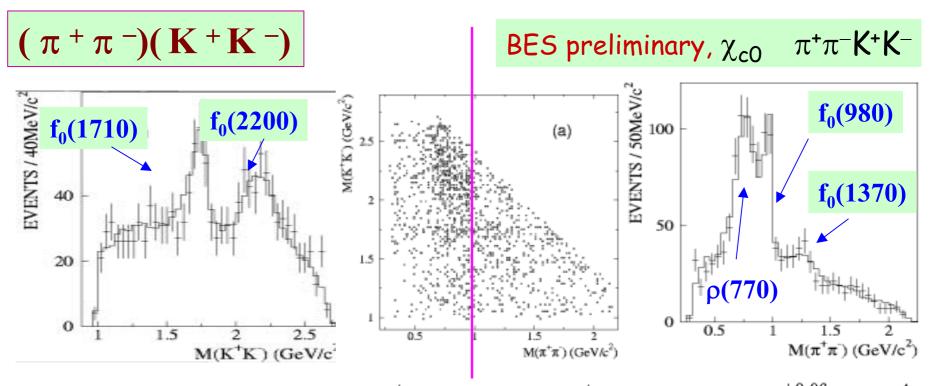

Kappa: K π S-wave resonance

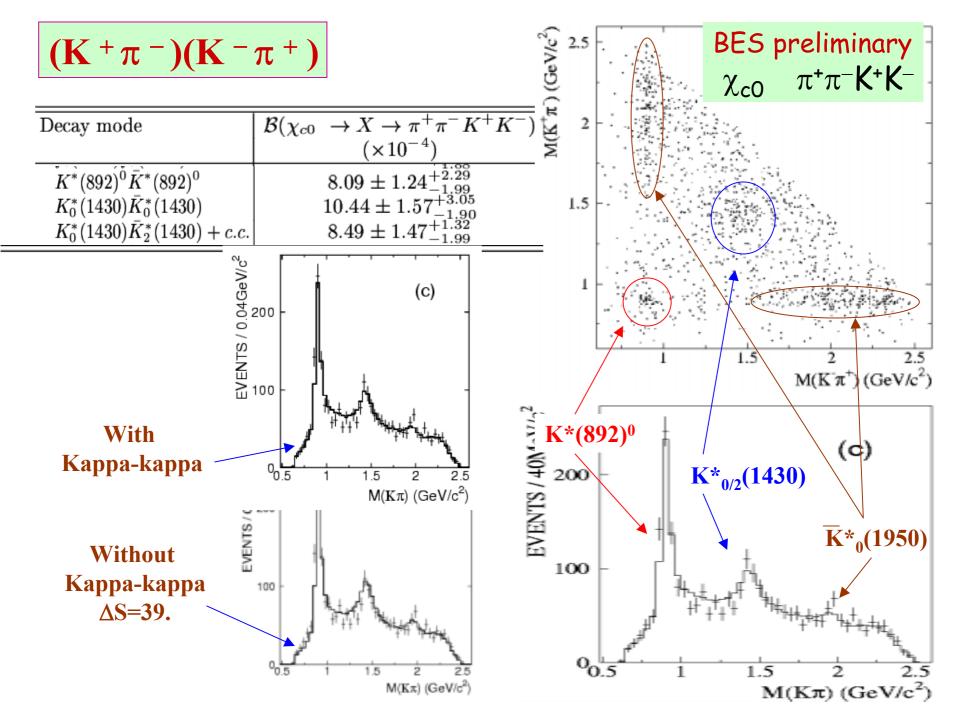
BES preliminary $J/\psi \pi^+\pi^-K^+K^-$

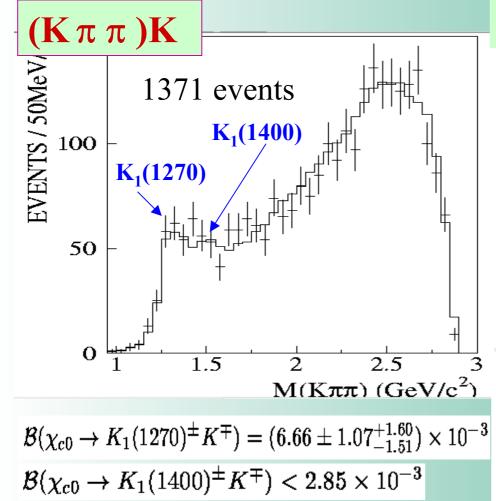

Pair production of scalars

BES preliminary $\gamma_{c0} = \pi^+\pi^-K^+K^-$

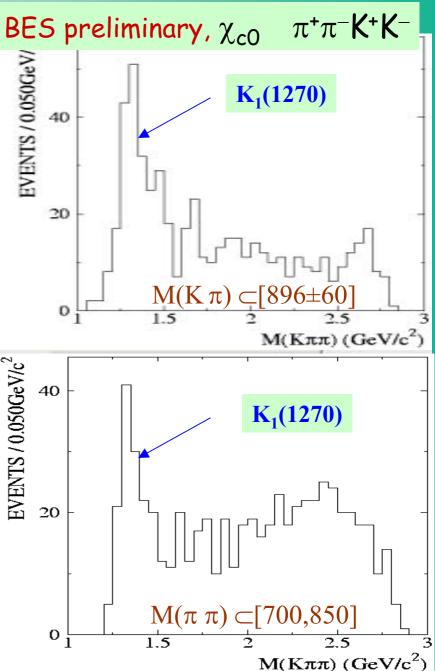
Different way for scalar study:


- 1. Start from J^{PC}=0++, 1++, 2++
- 2. Start from gluon+gluon
- 3. Pair production of scalars, very different information than in J/ψ decays


Can study different kinds of resonances:


•
$$(\pi + \pi^-)(K + K^-)$$

•
$$(K + \pi -)(K - \pi +)$$



 $\mathcal{B}[\chi_{c0} \to f_0(980)f_0(980)]\mathcal{B}[f(980) \to \pi^+\pi^-]\mathcal{B}[f(980) \to K^+K^-] = (1.73 \pm 0.42^{+0.96}_{-0.78}) \times 10^{-4}$ $\mathcal{B}[\chi_{c0} \to f_0(980)f_0(2200)]\mathcal{B}[f_0(980) \to \pi^+\pi^-]\mathcal{B}[f_0(2200) \to K^+K^-] = (8.42 \pm 1.16^{+1.65}_{-2.29}) \times 10^{-4}$ $\mathcal{B}[\chi_{c0} \to f_0(1370)f_0(1710)]\mathcal{B}[f_0(1370) \to \pi^+\pi^-]\mathcal{B}[f_0(1710) \to K^+K^-] = (7.12 \pm 1.46^{+3.28}_{-1.68}) \times 10^{-4}$ $\mathcal{B}[\chi_{c0} \to f_0(1370)f_0(1370)]\mathcal{B}[f_0(1370) \to \pi^+\pi^-]\mathcal{B}[f_0(1370) \to K^+K^-] < 2.9 \times 10^{-4},$ $\mathcal{B}[\chi_{c0} \to f_0(1370)f_0(1500)]\mathcal{B}[f_0(1370) \to \pi^+\pi^-]\mathcal{B}[f_0(1500) \to K^+K^-] < 1.8 \times 10^{-4},$ $\mathcal{B}[\chi_{c0} \to f_0(1500)f_0(1370)]\mathcal{B}[f_0(1500) \to \pi^+\pi^-]\mathcal{B}[f_0(1500) \to K^+K^-] < 1.4 \times 10^{-4},$ $\mathcal{B}[\chi_{c0} \to f_0(1500)f_0(1500)]\mathcal{B}[f_0(1500) \to \pi^+\pi^-]\mathcal{B}[f_0(1500) \to K^+K^-] < 0.55 \times 10^{-4},$ $\mathcal{B}[\chi_{c0} \to f_0(1500)f_0(1710)]\mathcal{B}[f_0(1500) \to \pi^+\pi^-]\mathcal{B}[f_0(1710) \to K^+K^-] < 0.55 \times 10^{-4},$ $\mathcal{B}[\chi_{c0} \to f_0(1500)f_0(1710)]\mathcal{B}[f_0(1500) \to \pi^+\pi^-]\mathcal{B}[f_0(1710) \to K^+K^-] < 0.73 \times 10^{-4}.$ $\mathcal{B}[\chi_{c0} \to f_0(1500)f_0(1710)]\mathcal{B}[f_0(1500) \to \pi^+\pi^-]\mathcal{B}[f_0(1710) \to K^+K^-] < 0.73 \times 10^{-4}.$ $\mathcal{B}[\chi_{c0} \to f_0(1500)f_0(1710)]\mathcal{B}[f_0(1500) \to \pi^+\pi^-]\mathcal{B}[f_0(1710) \to K^+K^-] < 0.73 \times 10^{-4}.$ $\mathcal{B}[\chi_{c0} \to f_0(1500)f_0(1710)]\mathcal{B}[f_0(1500) \to \pi^+\pi^-]\mathcal{B}[f_0(1710) \to K^+K^-] < 0.73 \times 10^{-4}.$

The mixing angle between K_{1A} and K_{1B} θ >57 degrees, while in ψ' decays to K_1K , the angle is θ <29 degrees. Why?

Vector charminia decay puzzle

- "12% rule" and " $\rho\pi$ puzzle"
- Experimental progress
- ψ" non-DDbar decays

The "12% rule"

M. Appelquist and H. D. Politzer, PRL34, 43 (1975)

$$\Gamma_h = |M_h|^2 |\Psi(0)|^2$$

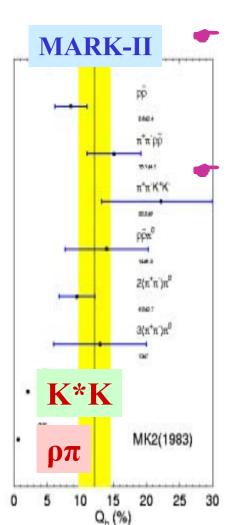
$$= (2/9\pi)(\pi^2 - 9) \frac{5}{13} \alpha_s^3 (\frac{4}{3}\alpha_s)^3 m_{\theta'}. \tag{3}$$

The leptonic width via one photon into $\bar{l}l$ is

$$\Gamma_{I} = |M_{I}|^{2} |\Psi(0)|^{2} = \frac{1}{2} (\frac{2}{3}\alpha)^{2} (\frac{4}{3}\alpha_{s})^{3} m_{\mathcal{C}'}, \tag{4}$$

where $\alpha \approx \frac{1}{137}$. Although separately these calculations are not trustworthy, the ratio

$$\frac{\Gamma_{1}}{\Gamma_{h}} = \frac{\frac{2}{9}\alpha^{2}}{(2/9\pi)(\pi^{2} - 9)5/\alpha_{s}^{3}}$$
 (5)


is independent of wave-function effects.

This is the famous (or notorious)

"12% rule".

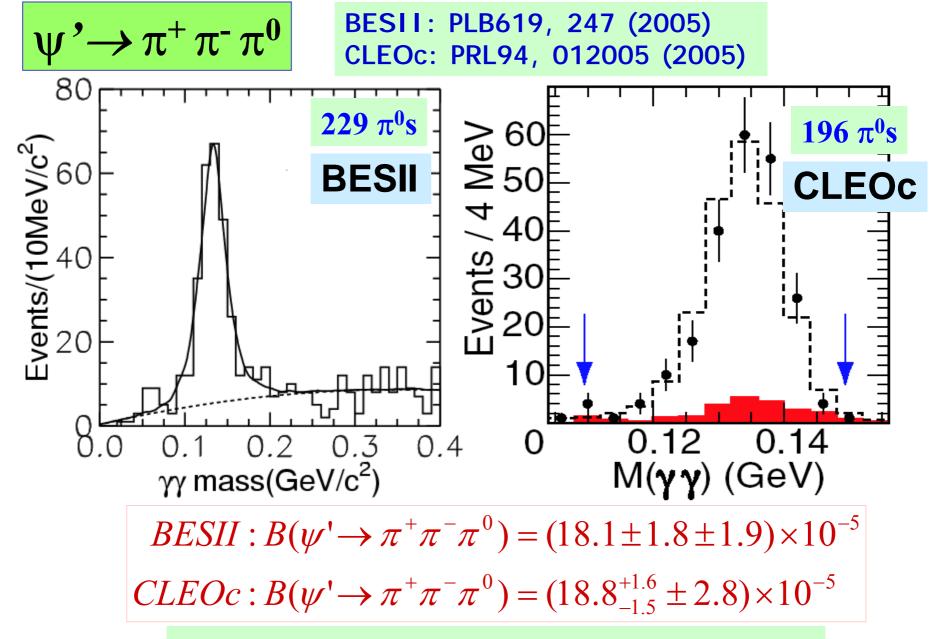
$$Q_{h} = \frac{B_{\psi^{'} \to X}}{B_{J/\psi \to X}} = \frac{B_{\psi^{'} \to e^{+}e^{-}}}{B_{J/\psi \to e^{+}e^{-}}} = 12\%$$

"12% rule" and " $\rho\pi$ puzzle"

Violation found by Mark-II, confirmed by BESI at higher sensitivity.

Extensively studied by BESII/CLEOc

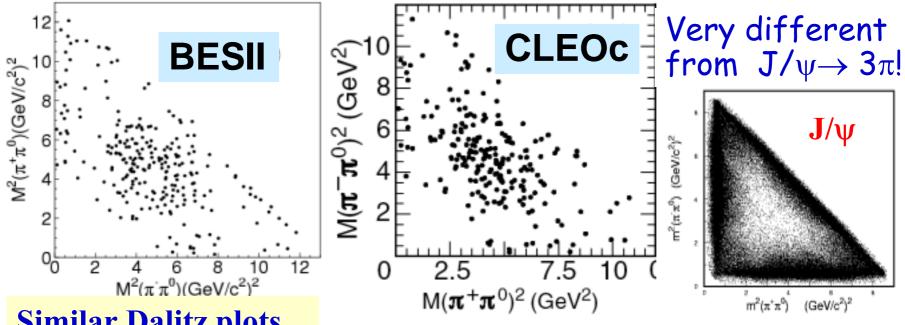
- VP mode: $\rho \pi$, $K^{*+}K^{-}+c.c.$, $K^{*0}K^{0}+c.c.$, $\omega \pi^{0}$,...
- →PP mode: K_SK_L
- \bullet BB mode: pp, ΛΛ, ...
- \bullet VT mode: K*K*₂, ϕ f₂', ρ a2, ω f₂
- **-3-body: pp**π⁰, **pp**η, π⁺π⁻π⁰, ...
- Multi-body: $K_S K_S hh$, $\pi^+ \pi^- \pi^0 K^+ K^-$, $3(\pi^+ \pi^-)$, ...


Extension of the "12% rule"

TIN Potential model, if J/ψ , ψ' , and ψ'' are pure 15, 25, and 1D states, one expects

$$Q_{h} = \frac{B_{\psi' \to X}}{B_{J/\psi \to X}} = \frac{B_{\psi' \to e^{+}e^{-}}}{B_{J/\psi \to e^{+}e^{-}}} = (12.7 \pm 0.6)\%$$

$$Q'_{h} = \frac{B_{\psi'' \to X}}{B_{J/\psi \to X}} = \frac{B_{\psi'' \to e^{+}e^{-}}}{B_{J/\psi \to e^{+}e^{-}}} = (1.9 \pm 0.3) \times 10^{-4}$$

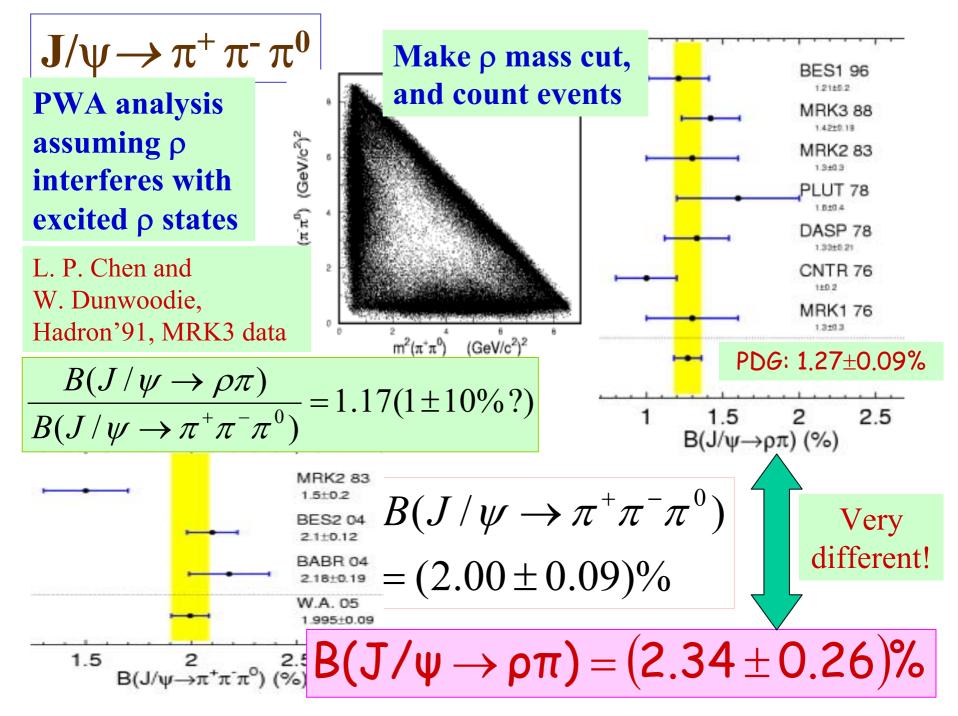

- ◆but ψ' and ψ'' are known not pure 25 and 1D states
 PRD17, 3090 (1978); 21, 203 (1980); 41, 155 (1990); ...
- Let's look at data ... (and first, the story of $\rho\pi$)

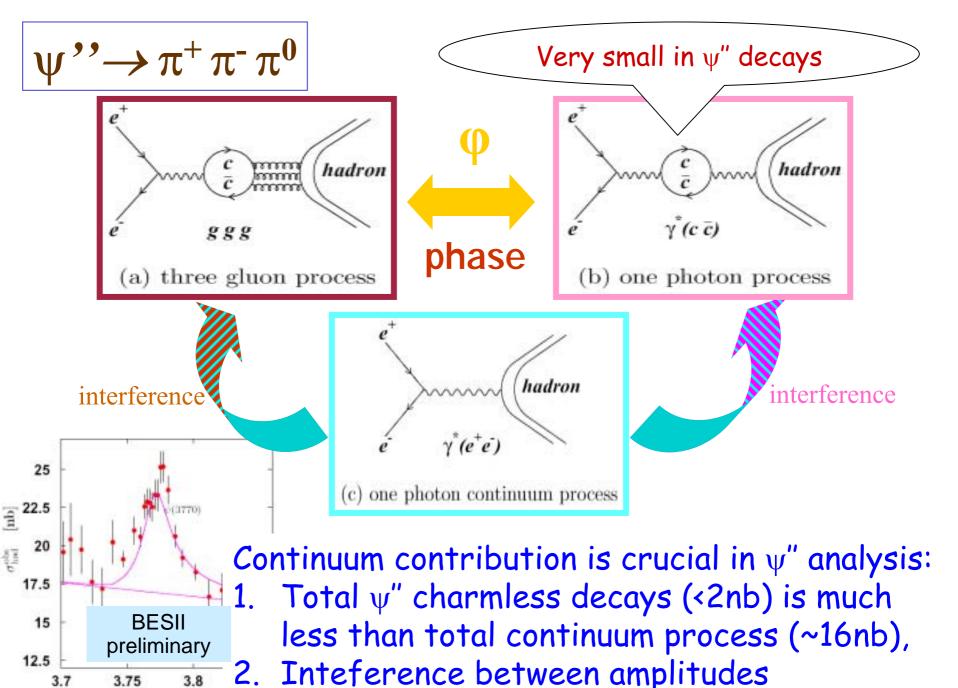
BES and CLEOc in good agreement!

$\Psi' \rightarrow \pi^+ \pi^- \pi^0$

Dalitz plots after applying π^0 mass cut!

Similar Dalitz plots,

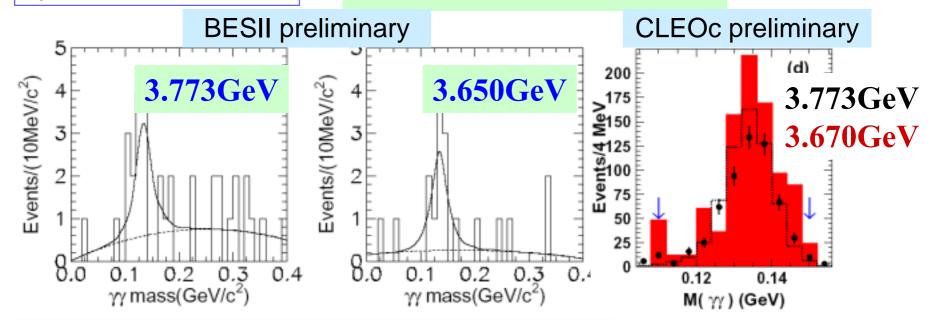

different data


BESII: $B(\psi' \to \rho \pi) = (5.1 \pm 0.7 \pm 1.1) \times 10^{-5}$

handling techniques: $CLEOc: B(\psi' \to \rho\pi) = (2.4^{+0.8}_{-0.7} \pm 0.2) \times 10^{-5}$

PWA vs counting!

 $\psi' \rightarrow \rho \pi$ is observed, it is not completely missing, BR is at 10⁻⁵ level!



3.7

 $E_{\rm cm}~[{\rm GeV}]$

$$\psi$$
 '' $\rightarrow \pi^+ \pi^- \pi^0$

CLEOc: CLEO-CONF 05-01

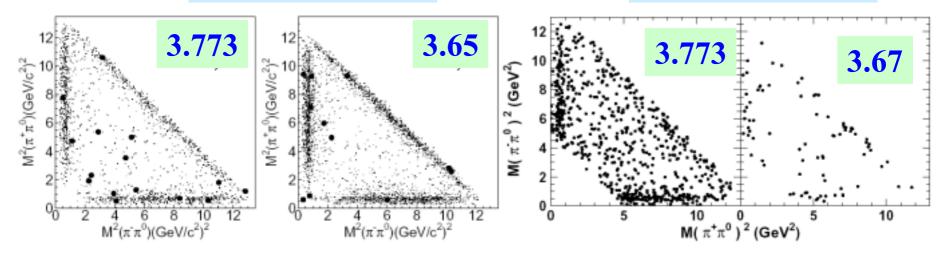
$$\sigma^{B}(e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}) @3.773 \ GeV : @continuum :$$


BESII : $(8.6 \pm 3.3 \pm 2.1) pb$

 $CLEOc: (7.4 \pm 0.4 \pm 1.2) pb$

 $(19.3 \pm 7.3 \pm 3.7) pb$

 $(13.1^{+1.8}_{-1.7}\pm 2.1) pb$


BES and CLEOc are in good agreement! X-section at ψ'' peak is smaller than at continuum!

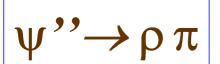
CLEOc: CLEO-CONF 05-01

BESII preliminary

CLEOc preliminary

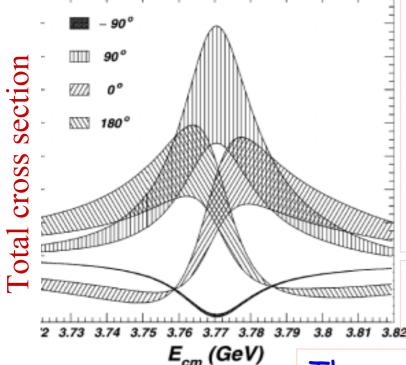
$$\sigma^{B}(e^{+}e^{-} \rightarrow \rho\pi) @3.773 GeV : @continuum :$$

BESII :< 6.0 pb


 $CLEOc: (4.4 \pm 0.3 \pm 0.5) pb$

< 25 pb

 $(8.0^{+1.7}_{-1.4} \pm 0.9) pb$ ISR correction.


Subtle difference in handling efficiency and

BES and CLEOc are in good agreement! X-section at ψ'' peak is smaller than at continuum! \rightarrow non-zero $\psi'' \rightarrow \rho \pi$ amplitude.

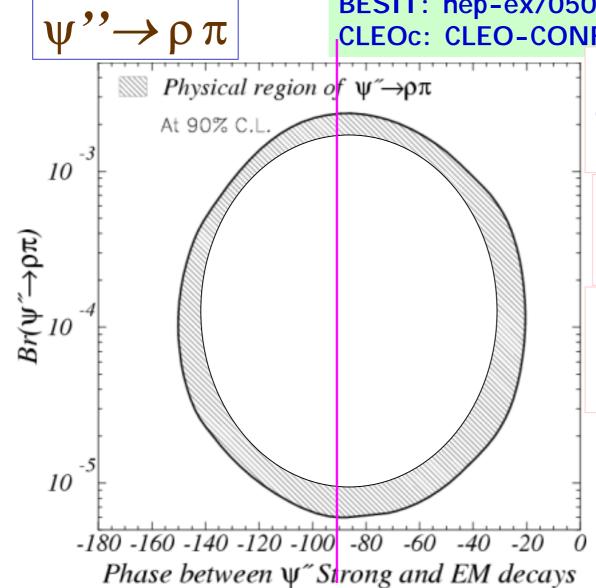
CLEOc: CLEO-CONF 05-01

Wang, Yuan and Mo:PLB574,41(2003)

$$\sigma_{on}^{B} \propto \left| a_{\psi" \to ggg} + a_{\psi" \to \gamma^*} + a_{e^+e^- \to \gamma^*} \right|^2$$

off - resonance - peak:

$$\left| \sigma_{o\!f\!f}^{\scriptscriptstyle B} \propto \left| a_{e^+e^- o \gamma^*}
ight|^2$$


$$\left| B(\psi'' \to \rho \pi) \propto \left| a_{\psi'' \to ggg} + a_{\psi'' \to \gamma^*} \right|^2$$

 $\sigma^{B} = \frac{n^{obs}}{L\varepsilon(1+\delta)}$

Three unknowns with two equations --- One can plot the BR versus phase ϕ .

 $\sigma^{\rm B}$ depends on efficiency and ISR correction, efficiency and ISR correction depends on $\sigma^{\rm B}(s)$!

Iteration is necessary!

CLEOc: CLEO-CONF 05-01

BES data restrict BR and phase in a wide range (@90% C.L.):

$$BR \in (6 \times 10^{-6}, 2.4 \times 10^{-3})$$

 $\phi \in (-150^{\circ}, -20^{\circ})$

CLEOc data further restrict BR and phase in a ring*. At ϕ =-90°:

$$BR = (2.1 \pm 0.3) \times 10^{-3}$$

$$or$$

$$BR = (2.4^{+3.4}_{-2.0}) \times 10^{-5}$$

*Toy MC is used to get BR from CLEOc data (not CLEO official results)!

J/ψ , ψ ', ψ '' $\rightarrow \rho \pi$

•Partial width of $\psi'' \rightarrow \rho \pi$ is larger than that of $\psi' \rightarrow \rho \pi!$ •hard to understand if ψ'' is pure 1D state, also hard if ψ'' is 25 and 1D mixture.

$$\Gamma(J/\psi \to \rho \pi) \approx 2.1 \, keV$$

$$\Gamma(\psi' \to \rho \pi) \approx 0.014 \, keV$$

$$\Gamma(\psi'' \to \rho \pi) \approx 50 \, keV$$

$$or$$

$$\Gamma(\psi'' \to \rho \pi) \approx 0.6 \, keV$$

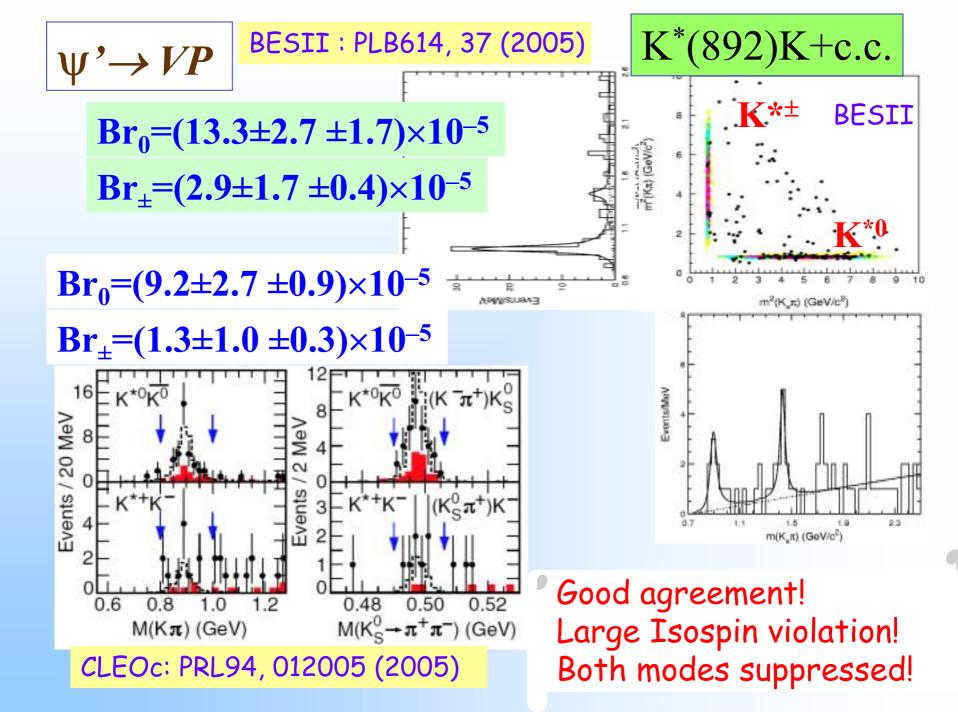
$$\frac{B(\psi' \to \rho \pi)}{B(J/\psi \to \rho \pi)} = (0.20 \pm 0.06)\% \quad Q_e = 12.7\%$$

$$Q_{\rm e} = 12.7\%$$

$$\frac{B(\psi'' \to \rho \pi)}{B(J/\psi \to \rho \pi)} = (9.0 \pm 1.6)\%$$

 $Q_{e} = 0.019\%$

 $\frac{B(\psi'' \to \rho \pi)}{B(J/\psi \to \rho \pi)} = (0.10^{+0.15}_{-0.09})\%$


In S-D mixing model, using mixing angle θ =12°, using Rosner's assumption (12% rule for 15 and 25), one predicts $Q'_{\rho\pi} = (2.7-5.3)\%!$

 $\phi \neq -90^{\circ}$ or imperfect model?

Other ψ' decay modes

- $\circ \psi' \rightarrow \rho \pi$ is suppressed by a factor of 60!
- $\circ \psi'' \rightarrow \rho \pi$ is enhanced!
- Other modes may supply more information!

We list a few new measurements using BESII/CLEOc data ...

$\psi' \rightarrow VP$

Mode	$\mathcal{B}~(10^{-6})$
$\pi^+\pi^-\pi^0$	$188^{+16}_{-15}\pm28$
$ ho\pi$	$24^{+8}_{-7}\pm 2$
$ ho^0\pi^0$	$9^{+5}_{-4}\pm 1$
$\rho^+\pi^-$	$15^{+7}_{-6}\pm 2$
$\omega\pi$	$25^{+12}_{-10}\pm2$
$\phi\pi$	_
$ ho\eta$	$30^{+11}_{-9}\pm 2$
$\omega \eta$	_
$\phi \eta$	$20^{+15}_{-11}\pm 4$
$K^{*0}\bar{K}^0$	$92^{+27}_{-22}\pm 9$
$K^{*+}K^-$	$13^{+10}_{-7}\pm3$
$b_1\pi$	$642^{+58}_{-56}\pm135$
$b_1^0\pi^0$	$235^{+47}_{-42}\pm 40$
$b_1^+ \boldsymbol{\pi}^-$	$418^{+43}_{-42}\pm 92$

h	$N^{ m obs}$	€ (%)	$B(\psi(2S) \rightarrow) \times 10^{-5}$
$\phi \pi^0$	<4.4	16.1	< 0.40
$\phi \eta$	16.7 ± 5.6	18.9	$3.3 \pm 1.1 \pm 0.5$
$\phi \eta'(\eta' \to \gamma \pi^+ \pi^-)$	5.8 ± 3.2	11.1	
$\phi \eta' (\eta' \rightarrow \eta \pi^+ \pi^-)$	2.6 ± 1.8	3.8	
$\phi \eta'$ (combined)	8.4 ± 3.7	8.4	$3.1 \pm 1.4 \pm 0.7$
$\omega \eta$	< 9.7	6.3	< 3.1
$\omega \eta'(\eta' \to \gamma \pi^+ \pi^-)$	4.2 ± 2.7	2.6	
$\omega \eta' (\eta' \to \eta \pi^+ \pi^-)$	$0.0^{+1.7}_{-0.0}$	1.8	
$\omega \eta'$ (combined)	$4.2_{-2.7}^{+3.2}$	2.3	$3.2^{+2.4}_{-2.0}\pm0.7$

State	$B_{\psi(2S)\to VP}(\times 10^{-5})$
$\omega\pi^0$	$1.87^{+0.68}_{-0.62}\pm0.28$
ρη	$1.78^{+0.67}_{-0.62} \pm 0.17$
$\rho\eta'$	$1.87^{+1.64}_{-1.11} \pm 0.33$

Some modes are suppressed, while some others obey the 12% rule!

CLEOc: PRL94, 012005 (2005)

BESII: PRD70, 112007 (2004) PRD70, 112003 (2004)

Multi-body ψ' decays

BESII: PRD71	,072006	(2005)
--------------	---------	--------

		_	
Mode h	$\mathcal{B}(\psi(2S) \to h)$ (units of 10^{-4})	\mathcal{B} (PDG) (units of 10^{-4})	Q_h (%) $Q_{p\overline{p}q}$
$\frac{1}{2(\pi^{+}\pi^{-})}$	$2.2 \pm 0.2 \pm 0.2$	4.50 ± 1.00	5.55 ± 1.5 Q_{pi}
$ ho\pi^+\pi^-$	$2.0 \pm 0.2 \pm 0.4$	4.20 ± 1.50	
$2(\pi^{+}\pi^{-})\pi^{0}$	$26.1 \pm 0.7 \pm 3.0$	30.00 ± 8.00	7.76 ± 1.10
$\eta\pi^+\pi^-$	< 1.6	_	_
$\omega\pi^+\pi^-$	$8.2\pm0.5\pm0.7$	4.80 ± 0.90	11.35 ± 1.94
$\eta 3\pi (\eta \to \gamma \gamma)$	$10.3 \pm 0.8 \pm 1.4$	_	_
$\eta 3\pi (\eta \rightarrow 3\pi)$	$8.1 \pm 1.4 \pm 1.6$	_	_
$\eta 3\pi$	$9.5 \pm 0.7 \pm 1.5$	_	_
$\eta'3\pi$	$4.5 \pm 1.6 \pm 1.3$	_	_
$K^+K^-\pi^+\pi^-$	$7.1 \pm 0.3 \pm 0.4$	16.00 ± 4.00	9.85 ± 3.23
ρK^+K^-	$2.2 \pm 0.2 \pm 0.4$	_	_
$\phi\pi^+\pi^-$	$0.9 \pm 0.2 \pm 0.1$	1.50 ± 0.28	11.07 ± 3.30
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$12.7 \pm 0.5 \pm 1.0$	_	10.59 ± 2.81
$\eta K^+ K^-$	<1.3	_	_
ωK^+K^-	$1.9\pm0.3\pm0.3$	1.50 ± 0.40	10.19 ± 2.96
$2(K^+K^-)$	$0.6\pm0.1\pm0.1$	_	6.71 ± 2.74
ϕK^+K^-	$0.8 \pm 0.2 \pm 0.1$	0.60 ± 0.22	5.14 ± 1.53
$2(K^+K^-)\pi^0$	$1.1\pm0.2\pm0.2$	_	_
$par{p}\pi^+\pi^-$	$5.9 \pm 0.2 \pm 0.4$	8.00 ± 2.00	9.90 ± 1.16
$\rho p \bar{p}$	$0.5 \pm 0.1 \pm 0.2$	_	_
$p\bar{p}\pi^+\pi^-\pi^0$	$7.3 \pm 0.4 \pm 0.6$	_	18.70 ± 5.80
$\eta p \bar{p}$	$0.8 \pm 0.3 \pm 0.3$	_	3.80 ± 2.09
$\omega p \bar{p}$	$0.6\pm0.2\pm0.2$	0.80 ± 0.32	4.69 ± 2.22
$p\bar{p}K^+K^-$	$0.3\pm0.1\pm0.0$	_	_
$\phi p \bar{p}$	< 0.24	< 0.26	_
$\Lambda ar{\Lambda} \pi^+ \pi^-$	$2.8\pm0.4\pm0.5$	_	_
$\Lambda \bar{p} K^+$	$1.0\pm0.1\pm0.1$	_	10.92 ± 2.93
$\stackrel{\Lambda \bar{p}K^+\pi^-}{=}CLEC$	Oc: PRL95,	062001	(2005)

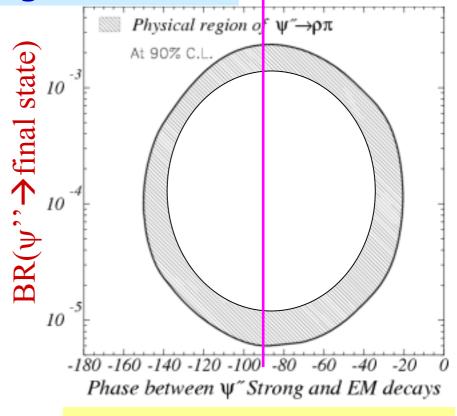
$Q_{p\overline{p}\pi^0}$	=	$\frac{\mathcal{B}(\psi' \to p\overline{p}\pi^0)}{\mathcal{B}(J/\psi \to p\overline{p}\pi^0)}$	$= \frac{(13.2 \pm 1.0 \pm 1.5) \times 10^{-5}}{(1.09 \pm 0.09) \times 10^{-3}}$	$=(12.1\pm1.9)\%,$
$Q_{p\bar{p}\eta}$	=	$\frac{\mathcal{B}(\psi' \to p\overline{p}\eta)}{\mathcal{B}(J/\psi \to p\overline{p}\eta)} =$	$\frac{(5.8 \pm 1.1 \pm 0.7) \times 10^{-5}}{(2.09 \pm 0.18) \times 10^{-3}} =$	$(2.8 \pm 0.7)\%$.

BESII, preliminary

Channel	$B_{\psi(2S)\to h}(10^{-4}$	$B_{J/\psi \to h}(10^{-4})$ $Q_h(\%)$	
$K^+K^-\pi^+\pi^-\pi^0$	12.4 ± 1.8	$120 \pm 28 \; [10] \;\; 10.3 \pm 2$.9
ωK^+K^-	2.38 ± 0.47	$16.8 \pm 2.1 \ [17] \ 14.2 \pm 3$.4
$f_0(1710) \to \omega K^+ K^-$	0.59 ± 0.22	$6.6 \pm 1.3 \; [17] \;\; 8.9 \pm 3.$	8

Modes

	Modes	20(10		C\$(70)
	$p\overline{p}$	2.87 ± 0.12	± 0.15	13.6 ± 1.1
CLEOc	$\Lambda \overline{\Lambda}$.	$3.28 {\pm} 0.23$	± 0.25	$25.2 {\pm} 3.5$
		$2.57{\pm}0.44$	± 0.68	-
preliminary:	$\Sigma^0 \overline{\Sigma^0}$	$2.63 {\pm} 0.35$	± 0.21	$20.7 {\pm} 4.2$
hep-ex/	$\Xi - \overline{\Xi} -$	$2.38 {\pm} 0.30$	± 0.21	13.2 ± 2.2
•	$\Xi_0 \overline{\Xi_0}$	$2.75 {\pm} 0.64$	± 0.61	
0505057		$0.72^{+1.48}_{-0.62}$:		-
		(<3.2 @9	0 CL)	
	$\Omega - \underline{\Omega} -$	$0.70^{+0.55}_{-0.33}$:	± 0.10	-
		(~16 @9	CL)	


 $B(10^{-4})$

Some modes are suppressed, some are enhanced, while some others obey the 12% rule!

Search for ψ'' decays to light hadrons

CLEOc preliminary: LP2005-439

	, o , , , , , , , , , , , , , , , , , ,	D .
Channel	$\sigma^{3.67 \text{GeV}} \text{ [pb]}$	$\sigma^{3.77 \text{GeV}} \text{ [pb]}$
$\pi^{+}\pi^{-}\pi^{0}$	$13.1^{+1.9}_{-1.7} \pm 2.1$	$7.4 \pm 0.4 \pm 1.2$
$ ho^0\pi^0$	$3.1^{+1.0}_{-0.8} \pm 0.4$	$1.3\pm0.2\pm0.2$
$\rho^+\pi^-$	$4.8^{+1.5}_{-1.2} \pm 0.5$	$3.2\pm0.3\pm0.3$
$\rho\pi$	$8.0^{+1.7}_{-1.4} \pm 0.9$	$4.4\pm0.3\pm0.5$
$\omega\pi^0$	$14.5^{+2.6}_{-2.3} \pm 1.5$	$14.8\pm0.6\pm1.5$
$\phi\pi^0$	< 2.2	< 0.2
$\rho\eta$	$9.6^{+2.1}_{-1.8} \pm 1.0$	$10.4 \pm 0.5 \pm 1.0$
$\omega\eta$	$2.3^{+1.8}_{-1.1} \pm 0.5$	< 0.8
$\phi\eta$	< 5.0	$4.5 \pm 0.5 \pm 0.5$
$\rho\eta'$	$2.0^{+4.5}_{-1.6} \pm 0.2$	$3.8^{+0.9}_{-0.8} \pm 0.5$
$\omega \eta'$	< 17.1	$0.6^{+0.7}_{-0.3} \pm 0.6$
$\phi\eta'$	< 12.6	< 5.2
$K^{*0}\overline{K^0}$	$23.5^{+4.6}_{-3.8} \pm 3.1$	$23.5 \pm 1.1 \pm 3.1$
$K^{*+}K^-$	< 3.5	< 0.6
$b_1^0 \pi^0$	< 17.1	< 2.6
$b_1^+\pi^-$		$4.7\pm0.4\pm0.6$
$h_1\pi$	$7.0^{+3.1} + 1.8$	7.6 ± 0.7

Same operation as for $\psi'' \rightarrow \rho \pi$ should done for all the modes to extract the BRs of ψ'' decays.

Some x-sections agree, some very different.

- ϕ = -90 degrees as in J/ψ and ψ' decays?
 - Any way to choose one solution?

"12%" rule and "0.02%" rule

$$\otimes \psi' \rightarrow VP$$
 suppressed

$$\otimes \psi' \rightarrow VT$$
 suppressed

$$\otimes \psi' \rightarrow B\underline{B}$$
 obey/enh

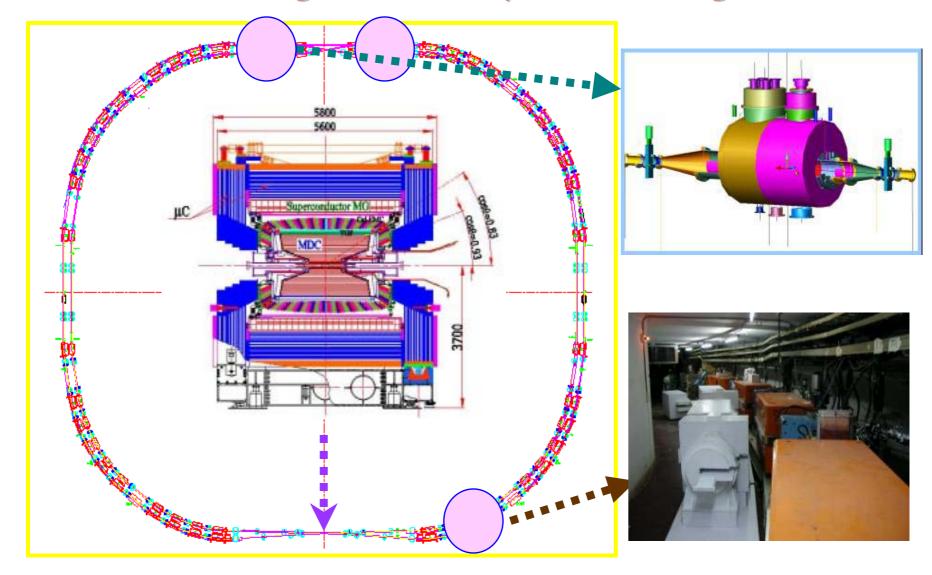
Multi-body -obey/sup

Seems no obvious rule to categorize the suppressed, the enhanced, and the normal decay modes of J/ψ and ψ '.

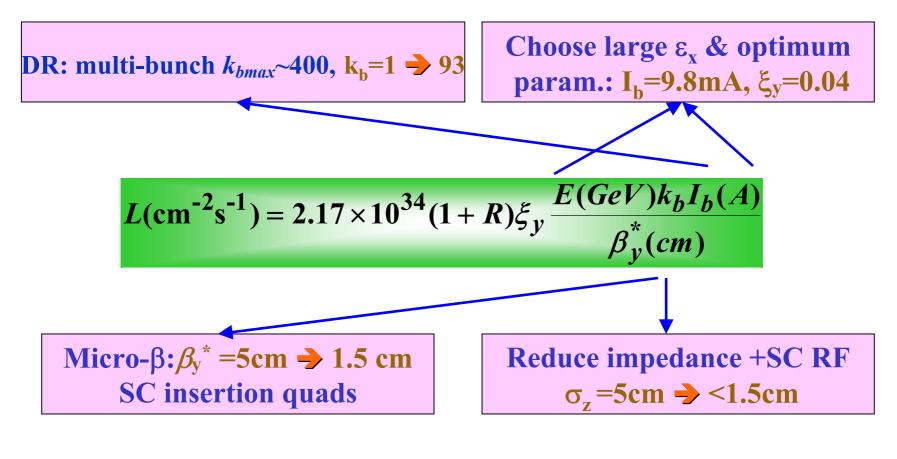
The models developed for interpreting specific mode may hard to find solution for other (all) modes.

The ψ'' decays into light hadrons may be large --- more data and more sophisticated analysis are needed to extract the branching fractions from the observed cross sections. Why D-wave decay width so large?

Model to explain J/ψ , ψ ' and ψ '' decays naturally and simultaneously?


- •S-D mixing in ψ ' and ψ '' [J. L. Rosner, PRD64, 094002 (2001)]
- •DD-bar reannihilation in ψ " (J. L. Rosner, hep-ph/0405196)
- •Four-quark component in ψ " [M. Voloshin, PRD71, 114003 (2005)]
- •Survival cc-bar in ψ ' (P. Artoisenet et al., hep-ph/0506325)
- •Other model(s)?

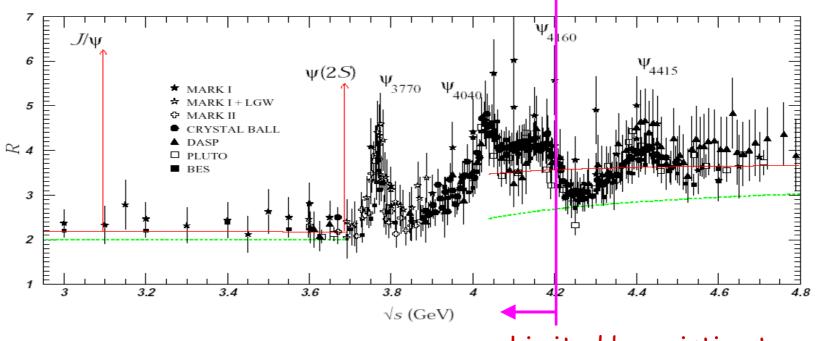
I did not cover D physics at BES, since the data sample is small and the detector is poorer than CLEOc --- we are working to have a modern detector (as well as a modern accelerator) for D physics, as well as for the physics I have just talked about, that is BESIII.


BESIII status

- BEPCII design
- BESIII detector status
- · Schedule

BEPCII: a high luminosity double-ring collider

BEPCII luminosity



$$(L_{BEPCII}/L_{BEPC})_{D.R.} = (5.5/1.5) \times 93 \times 9.8/35 = 96$$

 $L_{BEPC} = 1.0 \times 10^{31} \text{ cm}^{-2}\text{s}^{-1} \rightarrow L_{BEPCII} = 1 \times 10^{-33} \text{ cm}^{-2}\text{s}^{-1}$

Main Parameters of BEPCII

Parameters	Unit	Collision	SR
Operation energy (E)	GeV	1.0-2.1	2.5
Injection energy (E_{inj})	GeV	1.55-1.89	1.89
Circumference (C)	m	237.53	241.13
β^* -function at IP (β_x^*/β_y^*)	cm	100/1.5	-
Tunes $(v_x/v_y/v_s)$		6.53/7.58/0.034	8.28/5.18/0.035
Hor. natural emittance $(\varepsilon_{x\theta})$	mm·mr	0.14 @1.89 GeV	~0.10
Damping time $(\tau_x/\tau_y/\tau_e)$		25/25/12.5 @1.89 GeV	12/12/6
RF frequency (f _{rf})	MHz	499.8	499.8
RF voltage per ring (V_{rf})	MV	1.5	3.0
Bunch number (N_b)		93	multi
Bunch spacing	m	2.4	0.6
Beam current	mA	910 @1.89 GeV	250
Bunch length (cm) σ_l	cm	~1.5	-
Crossing angle	mrad	11×2	-
beam-beam param. ξ _y		0.04	-
Beam lifetime	hrs.	2.7	>10
luminosity@1.89 GeV	10 ³¹ cm ⁻² s ⁻¹	100	-

Charmonia Productions at BESIII

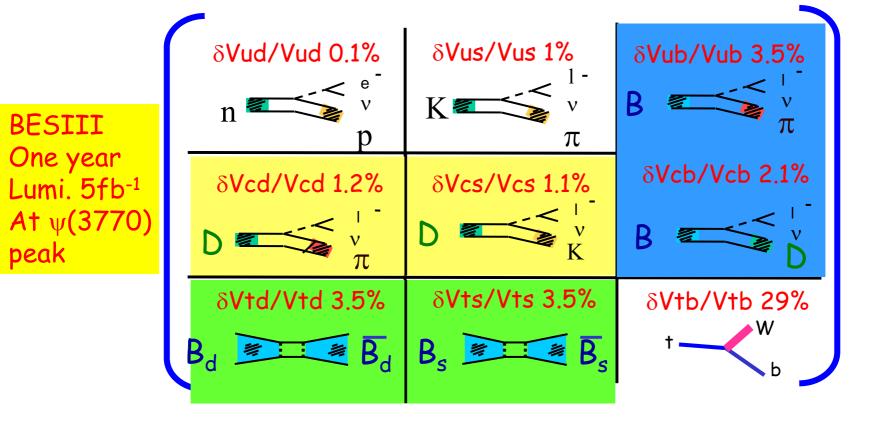
Limited by existing tunnel

Ecm energy spread:

$$\Delta = 2.73\sqrt{2}E_b^2 \times 10^{-4}$$

Ecm=3.097 GeV $\Delta = 0.93 \text{ MeV}$ Ecm=3.686 GeV $\Delta = 1.3 \text{ MeV}$ Important for narrow resonance like J/ψ or ψ' .

Events Productions at BESIII

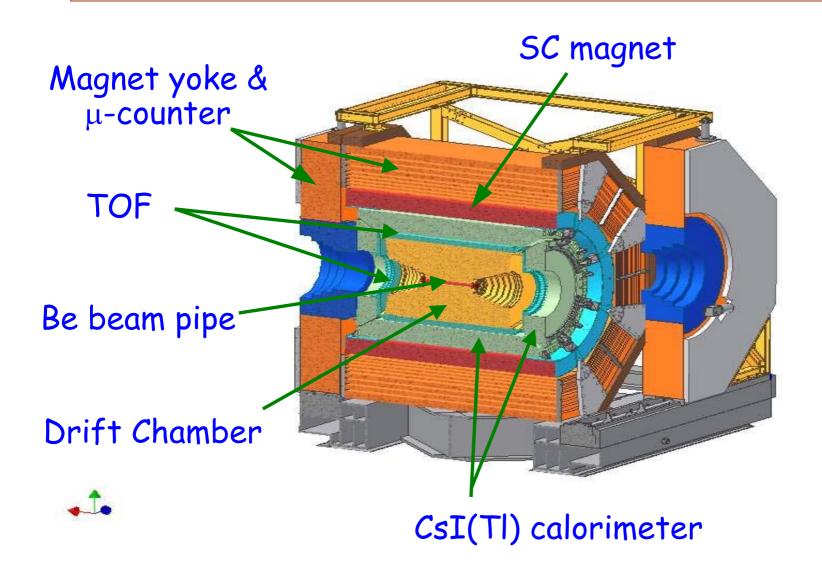

Physics	Ecm	Peak Lum. Cross		Events
		$(10^{33} \text{cm}^{-2} \text{s}^{-1})$	Sec.(nb)	/year
J/ψ	3.097	0.6	3400	10 × 10 ⁹
ψ(25)	3.686	1.0	640	3.2×10^9
ψ(3770)	3.770	1.0	7.4	37 × 10 ⁶
ψ(4040)	4.040	0.6	9.2	28 × 10 ⁶
ψ(4160)	4.160	0.6	6.2	19 × 10 ⁶
τ	3.670	1.0	2.4	12×10^6
DDbar	3.770	1.0	6	30×10^6
D _s	4.030	0.6	0.3	0.9×10^6
D _s	4.140	0.6	0.6	1.8×10^6

Average Lum. = $0.5 \times \text{Peak Lum}$; and 1 year = 10^7s data taking time

Huge numbers of J/ψ or ψ' in one year's running --- So the accelerator and detector optimized for D physics!

BESIII physics goals

Systematic study of hadron spectroscopy (qqbar, glueball, hybrids, baryons), charmonium physics (ψ 's and χ_c 's, h_c , η_c , ...), tau, R ...

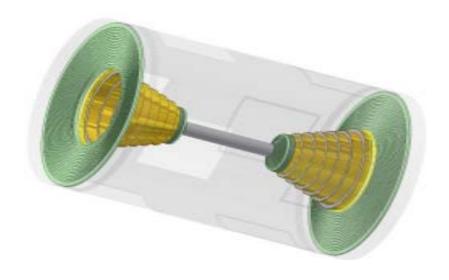


BESIII

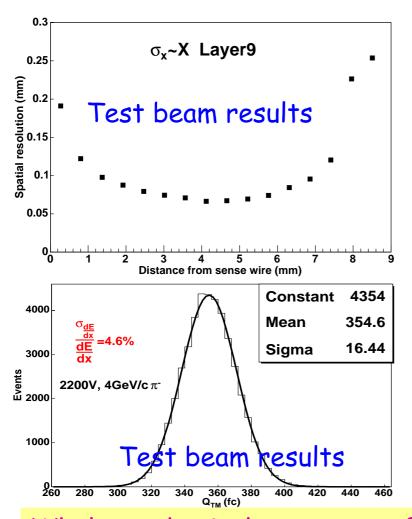
BESIII + Lattice QCD +B factories BESIII + Lattice QCD +B factories + pp

The Goal: Measure all CKM matrix elements and associated phases in order to over-constrain the unitary triangles.

The BESIII Detector



Main drift chamber


- Inner diameter: 63mm; Outer diameter: 810mm; length: 2400 mm, 40 layers
- End flange: 18 mm thick Al (6 steps)
- 7000 Signal wires: 25mm gold-plated tungsten (3% rhenium)
- 22000 Field wires: 110 mm gold-plated Aluminum
- Small cell: inner---6*6 mm², outer---8.2*8.2 mm²
- Gas: He + C₃H₈ (60%/40%)
 - Momentum resolution:

$$\frac{\sigma_{P_t}}{P_t} = 0.32\% \oplus 0.37\%$$

• dE/dx resolution : $6 \sim 7\%$

Main drift chamber

Single wire reso. dE/dx

BESIII $\sim 120 \mu m$ 6%

CLEOc: $\sim 100 \mu m$ 5.7%

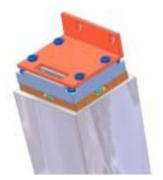
Babar: ~110μm 6.2%

Belle: $\sim 130 \mu m$ 5.7%

Whole mechanical structure of MDC have been assembled and delivered to IHEP, wiring started since Aug. 5, 2005, expect to be finished in Feb. 2006. Cosmic ray test Jun.-Jul. 2006.

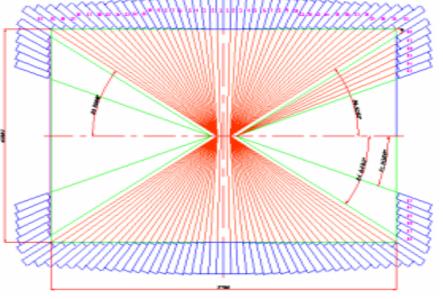
CsI(TI) crystal carlorimeter

- 6300 crystals, (5.2x5.2 6.4x6.4) x <u>28cm³</u>
- PD readout, noise ~1100 ENC
- Energy resolution: 2.5%@1GeV
- Position resolution: 6mm@1GeV
- Tiled angle: θ~1-3°, φ~1.5°

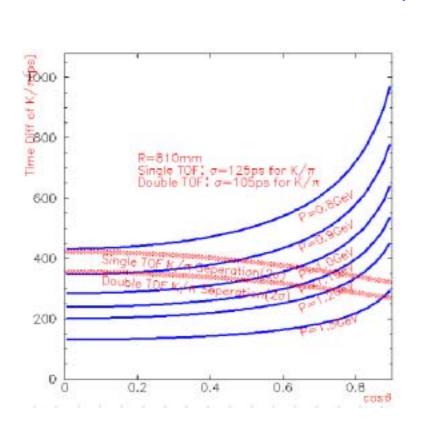

Other detectors:

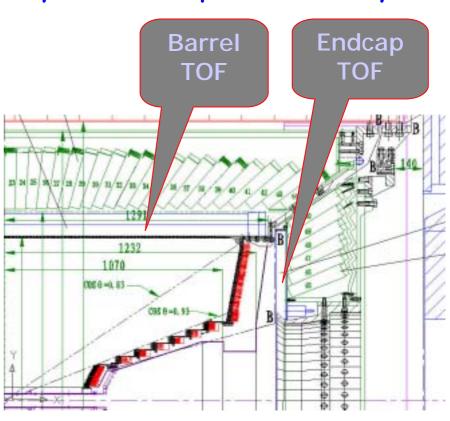
-Babar: 2.67%@1GeV

-BELLE: 2.2% @1GeV


-CLEOc: 2.2%@1GeV

Minimum materials between crystals




~60% crystals successfully delivered, 1/3 crystals tested and assembly underway.

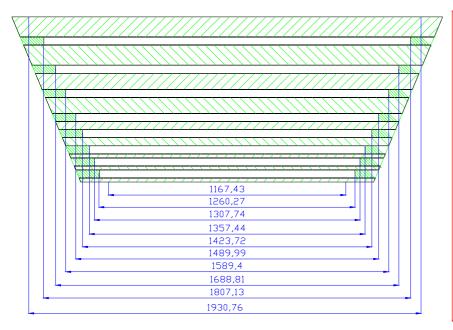
PartID: double-layer TOF

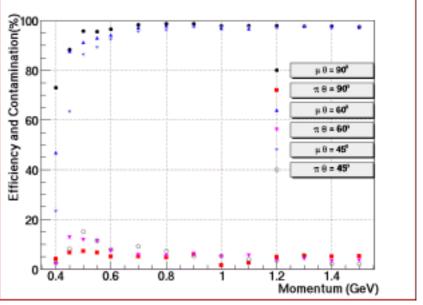
- R=81-92.5cm, coverage: 82%
- 88/layer pieces scintillator, 2.320m long, 5cm thick
- · Intrinsic time resolution 90ps/layer
- Time resolution 100-110ps/layer, 80-90ps double-layer

Super-conducting magnet

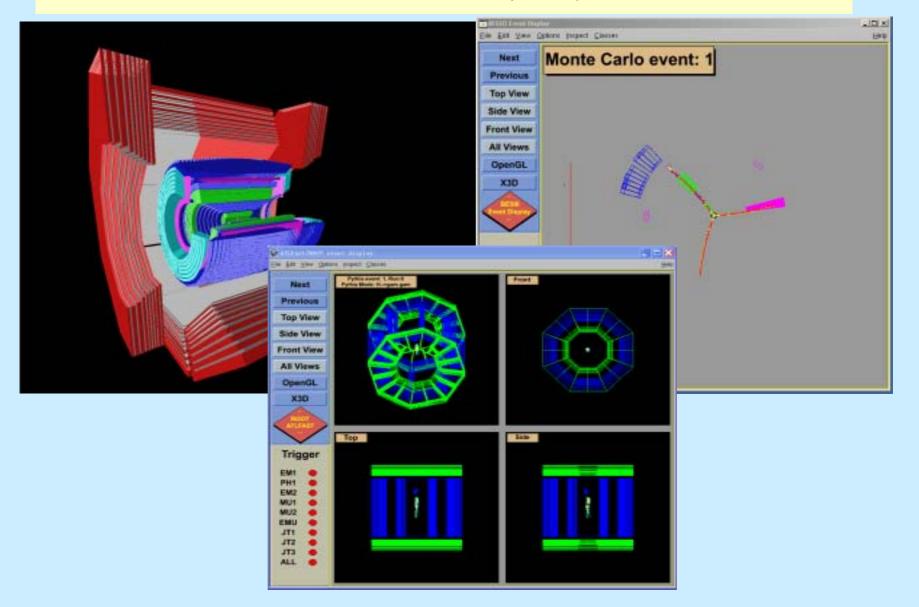
- Al stabilized NbTi/Cu conductor from Hitachi
- 1.0T, <5% non-uniformity
- 921 turns, 3150A @4.5K
- R = 1.475m, L=3.52m, cold mass 3.6t
- Thickness: 1.92X₀
- Inner-winding method

Coil wiring completed in June 2005, assembly finished. B-field measurement with iron yoke in one month.




μ system: RPC

- 9 layers, 2000m², 7500-8000V
- Bakelite and glass, no linseed oil
- 4cm strips, 10000 channels
- Tens of prototypes (up to 1*0.6m²)
- Noise less than 0.2 Hz/cm²


Known RPC quality and aging problems mainly related to the linseed oil

- Endcap completed
- ·Barrel in progress

Event Display

Project Schedule

- · → June 2003
- → May 2004
- Jan. 2004 → Jun. 2006
- May 2004 → Nov. 2004
- Nov. 2004 → Jan. 2005
- Jan. 2005 → Jun. 2005
- Jul. 2005 → Apr. 2006
- Jan. 2006 → June 2006
- Dec. 15, 2006
- Jan. 2007 →
- Feb. 2007 →

R&D and prototype

BEPC run

Construction

BESII dismounting/Linac upgrade

Linac commissioning

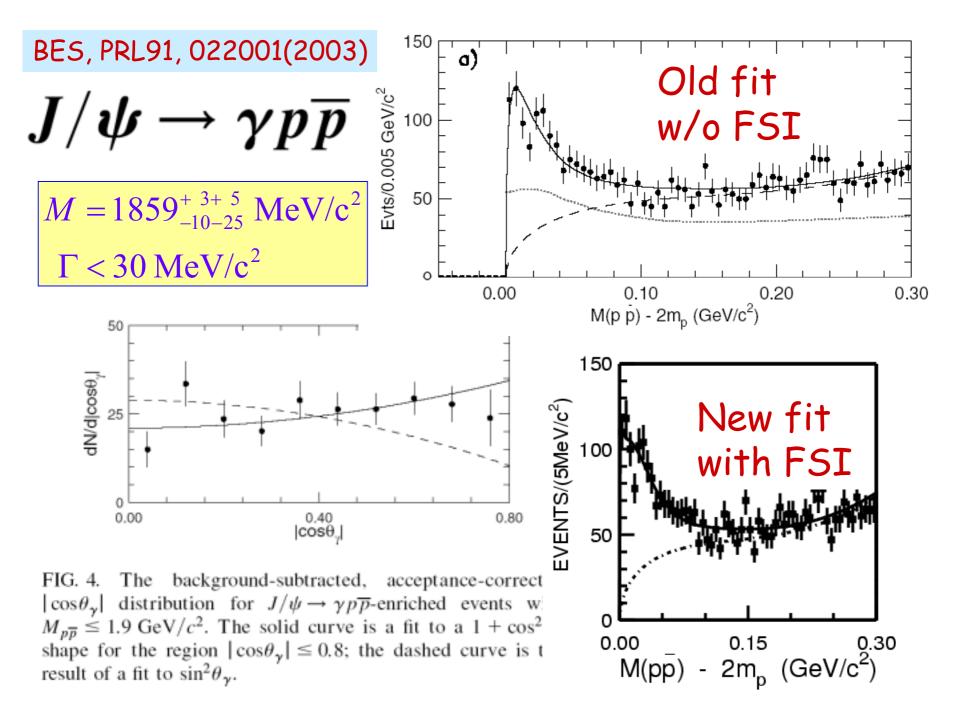
SR run

Storage ring assembling

Commissioning of storage ring

Move BESIII to beam-line

Commissioning machine & detector


Test run → physics run

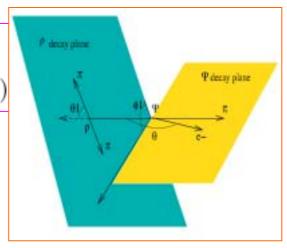
Very tight schedule

Summary

- Lots of progress in hadron spectroscopy and charmonium physics study from BES.
- * X(1835) observed in $J/\psi \rightarrow \gamma + (\eta'\pi\pi)$ decays, could be the same state observed in $J/\psi \rightarrow \gamma$ ppbar, could be a baryonium. Need more information (J^{PC} etc.).
- 4 Scalars are studied in J/ψ , ψ' and χ_{c0} decay. Parameters of σ and κ are given, other states are also measured in hadronic and radiative decays.
- ♣ Vector charmonia (J/ψ, ψ', and ψ'') hadronic decays are studied extensively and simultaneously to understand charmonium decay dynamics.
- * " $\rho\pi$ puzzle" remains a puzzle, ψ " charmless decays is observed and could be large.
- More data are needed (and expected) for further studies from BESIII.

谢谢! Merci! Thanks!

Comments on PWA


- Something may affect the results:
 - Resolution correction (finite momentum resolution)
 - Parametrization of the resonance (theoretical efforts)

(When statistics increases, significant fake signals may be produced)

- A PWA fit should supply also
 - Goodness-of-fit (indicate how reliable is the fit)
 - Likelihood method (Toy MC simulation)
 - χ^2 method (1-dimension or multi-dimension DT/MC comparison)
 - Correlation between components
 - Mass/width/fraction are all correlated, only quoting diagonal error is not enough
 - · Significance of the signal also depends on correlation

$$\psi' \rightarrow \pi^+ \pi^- \pi^0$$
PWA

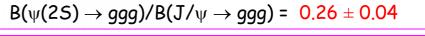
$$dI = \sum_{i=\pm 1} (|A_i|^2 + |C_i|^2) d(LIPS)$$

$$A_i = A_i^0(\pi^-, \pi^+) + A_i^+(\pi^+, \pi^0) + A_i^-(\pi^0, \pi^-)$$

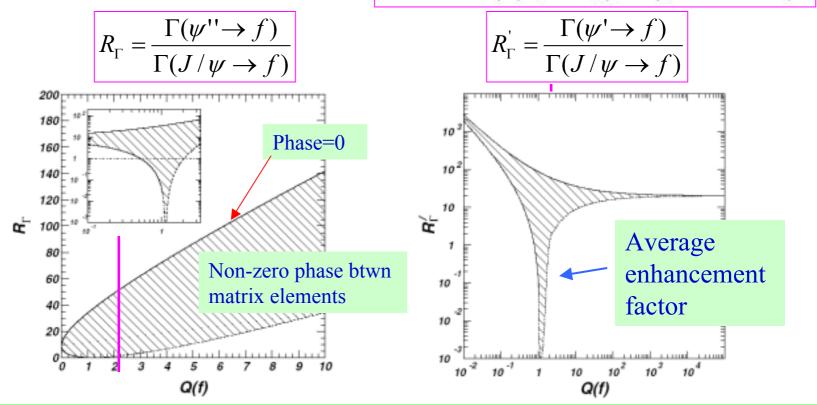
$$A_{\pm 1}^c = B(m^2)\sin\theta_{\pi}(\cos\phi_{\pi} \pm i\cos\theta\sin\phi_{\pi})e^{\pm i\phi}$$

$$B(m^2) = \frac{BW_{\rho(770)}(m^2) + \sum_{j} c_j e^{i\beta_j} BW_j(m^2)}{1 + \sum_{j} c_j}$$

$$BW_{\rho(M_{\rho})}^{GS}(m^2) = \frac{p_{\rho}\left(\frac{p_{\pi}(m^2)}{p_{\pi}(M_{\rho}^2)}\right)M_{\rho}^2(1+d\cdot\Gamma_{\rho}/M_{\rho})}{M_{\rho}^2-m^2+f(m^2)-im\Gamma_{\rho}(m^2)} \frac{\text{background term}}{\text{background term}}$$


C is incoherent

Gounaris-Sakurai's parametrization


S- and D-wave mixing

A prediction of ψ ' charmless decays Wang, Mo and Yuan, PRD70, 114014(2004)

- Q(f) < 1 means the final state f is suppressed in ψ' decays relative to J/ψ ; $B(\psi(2S) \rightarrow ggg)/B$
- Q(f) > 1 means it is enhanced;
- Q(f) = 1 means it observes the 12% rule.

$$Q(f) \equiv \frac{\Gamma(\psi' \to f)}{\Gamma(J/\psi \to f)} \frac{\Gamma(J/\psi \to e^+e^-)}{\Gamma(\psi' \to e^+e^-)}$$

Prediction on $\psi(3770)$ charmless decay branching fraction: $\leq 16\%$ (or 3.8MeV)