# Status Report from Cavity Package Tech System(CPTS)

K.Saito(KEK), D.Proch(DESY) and J.Mammosser(Jlab)

- Preparation for the RDR Cost Estimation
- Contact Person to the Area System
- Expected Problems
- Engineering Efforts in KEK

# **CPTS Cost Estimation for RDR** and

# **Contact Person to Area System**

K.Saito

## Areas covered by CPTS

|            | NCRF<br>< ~100MeV              | SCRF<br>Capture<br>15MV/m | SCRF<br>0.1 – 5GeV      | SCRF<br>0.25-5GeV       | SCRF<br>CW operation           | SCRF<br>Bunch<br>compressor | SCRF<br>5-250GeV<br>X 2 | SCRF<br>Crab<br>cavity   |
|------------|--------------------------------|---------------------------|-------------------------|-------------------------|--------------------------------|-----------------------------|-------------------------|--------------------------|
| E-Injector | 1.3GHz<br>Normal<br>conducting | -                         | ILC<br>Baseline<br>like | -                       | -                              | -                           | -                       |                          |
| P-Injector |                                | ILC<br>Baseline<br>like   | -                       | ILC<br>Baseline<br>Like | -                              | -                           | -                       |                          |
| DR         | -                              | -                         | -                       | -                       | 650MHz<br>KEKB/Cornell<br>like | -                           | -                       |                          |
| RTML       | -                              | -                         | -                       | -                       | -                              | ILC<br>Baseline<br>like     | -                       |                          |
| ML         | -                              | -                         | -                       | -                       | -                              | -                           | ILC<br>Baseline         |                          |
| BDS        |                                |                           |                         |                         |                                |                             |                         | KEKB like<br>Crab cavity |

NCRF cavity for E-source: Need to assign a volunteer SCRF for DR: KEKB/Cornell like @ 650MHz ILC Baseline cavity package: TESLA TDR and US cold option BDS crab cavity system: KEKB like

## **Cost Estimation Items in CPTS**

- NCRF Cavity
- SCRF Cavity: Material, TESLA-shape cavity Fabrication
- LHe tank on the cavity with LHe supplying tube
- Tuner
- Input coupler
- HOM @ end of the module
- Cavity Preparation
- Cavity field flat tuning
- Input coupler processing
- Cavity assembly for acceptance test (vertical test)
- Cavity Acceptance test (vertical test)
- Cavity String assembly

#### Red items are not clearly defined for CPTS but must be covered.

|                                              | Module* | Cavities | LHe<br>tank | Tuner | Input<br>coupler | НОМ  | Methodology of cost estimation<br>Contact person to ASL<br>(Candidates, not yet fix) |
|----------------------------------------------|---------|----------|-------------|-------|------------------|------|--------------------------------------------------------------------------------------|
| E-Injector                                   | 19      | 152      | 152         | 152   | 152              | 19   | EU : TESLA TDR + input of<br>RDR cost estimation methodology<br>+ EURO XFEL          |
| P-Injector                                   | 19      | 152      | 152         | 152   | 152              | 19   | <b>Dieter Proch</b>                                                                  |
| RTML E- 1 <sup>st</sup> BC                   | 3       | 24       | 24          | 24    | 24               | 3    | USA : USCOP                                                                          |
| E-2 <sup>nd</sup> BC<br>P-1 <sup>st</sup> BC | 57      | 456      | 456         | 456   | 456              | 57   | + input of RDR cost estimation methodology                                           |
| P-2 <sup>nd</sup> BC                         | 3       | 24       | 24          | 24    | 24               | 3    | John Mammosser                                                                       |
|                                              | 57      | 456      | 456         | 456   | 456              | 57   |                                                                                      |
| ML Electron 15 –150GeV                       | 552     | 4416     | 4416        | 4416  | 4416             | 552  | Asia : New cost estimation by the RDR cost estimation methodology                    |
| Electron 150-250GeV                          | 396     | 3168     | 3168        | 3168  | 3168             | 396  | Kenji Saito                                                                          |
| Positron 15-250GeV                           | 936     | 7488     | 7488        | 7488  | 7488             | 936  |                                                                                      |
| Baseline cavity total                        | 2042    | 16336    | 16336       | 16336 | 16336            | 2042 |                                                                                      |
| DR Electron                                  | 1       | 1        | 1           | 1     | 1                | 2    | KEKB like cavity                                                                     |
| Positron                                     | 1       | 1        | 1           | 1     | 1                | 2    | Shinji Mitsunobu(?)                                                                  |
| BDS Electron crab                            | 1       | 1        | 1           | 1     | 1                | 2    | KEKB like crab cavity                                                                |
|                                              | 1       | 1        | 1           | 1     | 1                | 2    | Kenji Hosoyama (?)                                                                   |

\* Module includes 8 cavities.

# **Contact Person to Area System** Not yet fixed, but probably D.Proch

## Volunteers

- we are looking for a volunteer with normal conducting cavity
- we will ask volunteer to KEK/Cornell colleague for DR
- we will ask volunteer to KEK colleague for crab cavity in the BDS

## **Proposal of the on-site facilities from CPTS**

- Cavity Preparation facility on the ILC site
- Cavity Acceptance Test (Vertical Test) on the ILC site
- Cavity String Assembly Facility on the ILC site
- Input coupler processing Facility on the ILC site

Cavity production rate ~17/day (for 4 years) Acceptable resources for the ILC mass production, ~10 places: for example preparation DESY, Hankel, KEK, Nomura Plating, Jlab, FNAL/ANL+ Others Current or future resources will be a half capacity of that needed in the ILC production.

- 1) Too much production rate for existing resource use.
- 2) Will be too expensive in company site facility and difficult for repairing modules.
- 3) We need a close communication between Preparation and VT for the reliable performance.
- 4) Assembled cavity string is not robust then, transportation will be a problem on the alignment.
- 5) Special cleaning tech and clean assembly facility is needed.for input coupler assembly. it can be shared with cavity in case of the on site.

K.Saito

# **Expected Problems in the CPTS**

K.Saito

## List of the expected problem on the cost estimation in CPTS

|                        | Expected problems                                                                                                                                                                 |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technical              | <ol> <li>Not yet fixed the BCD on the tuner system</li> <li>Estimation of the time consuming process: coupler processing</li> <li>Scattering of the cavity performance</li> </ol> |
| Temporal               | 1) How to open the intellectual information                                                                                                                                       |
| Resource<br>limitation | <ol> <li>Need a help for NCSR</li> <li>DESY is too busy with the EURO XFEL</li> <li>KEK crab people is too busy with the KEKB installation</li> </ol>                             |

# **Engineering Efforts in KEK**

Cavity
 High power input coupler
 Coaxial ball tuner system

## **BCD on Cavity Package and Engineering Effort**

|               | ILC BCD                                                                          | ILC ACD                                                              |
|---------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Cavity        | TESLA shape by polycrystalline Nb sheet<br>Operation 31.5MV/m                    | LL/RE shape, large or single<br>crystal Nb sheet<br>Operation 36MV/m |
| Input Coupler | TTF-III Type<br>(twin cylindrical windows)                                       | Two Disk type coupler<br>TRISTAN type<br>Capacitive coupling         |
| Tuner         | Saclay/TTF tuner is close to the BCD,<br>but no candidate for BCD at the current | Coaxial tuners<br>Blade tuner<br>Coaxial ball tuner<br>Slide tuner   |

Engineering issues

Cavity : Narrow scattering in the current performance Input coupler : Reduce the fabrication cost Tuner : Establish the BCD



<sup>12</sup> March 2006 in Bangalore, India

#### Statistics with 45MV/m achievement in the first round



## What is problem?





#### 9-cell cavity R&D in KEK for ILC-ACD

#### 35MV/m baseline cavity R&D and 45MV/m ACD (ICHIRO cavity) R&D both just started in KEK.





16

#### **Input Coupler for ILC-ACD**



#### By Matsumoto and Kazakov @ KEK

Major Parameters

Input rf power: 500 kW

Pulse width: 1.3 msec

Repetition rate: 5 Hz

Average rf power: 3.25 kW

| Thermal loss [W] |      |      |          |  |  |  |
|------------------|------|------|----------|--|--|--|
|                  | 80K  | 5K   | 2K       |  |  |  |
| Static:          | 1.24 | 0.54 | 2.6x1e-4 |  |  |  |
| Dynamic:         | 2.14 | 2.88 | 0.25     |  |  |  |
| Total:           | 3.38 | 3.42 | ~0.25    |  |  |  |



K.Saito

ILC GDE Meeting at LICWS06 on 9-12 March 2006 in Bangalore, India



The complete input coupler can be divided into four relatively simple parts to ease fabrication and assembly. If that the inner assume we conductors are not attached rigidly to the waveguide, we bellows need only two to absorb the movement of the coaxia line due to thermal contaction and expansion between cool down and warm up.

fabrication The of each module dose not overlap for the technical requirements.

K.Saito

#### **STRUCTURE FOR POWER COUPLER**



TITLE: INPUT COUPLER FOR ILC-45MV/M DATE: AUG. 18, 2k5 H. MATSUMOTO, S. KAZAKOV

#### **High Power Test Stand for ILC-ACD**



Transmission type waveguide

#### PHOTOS OF RF WINDOW AT COLD SIDE

#### On 23 Feb 2006

#### Cold RF window



K.Saito

12 March 2006 in Bangalore, India

## PHOTOS OF PARTS FOR POWER COUPLER



#### Bellows at warm side





#### Inner conductor at warm side

Bellows at cold side

## PHOTOS OF COAXIAL LINE AT COLD SIDE





#### Inner conductor at cold side

#### Outer conductor at cold side

K.Saito

#### **Coaxial ball tuner system for ILC-BCD**



## **Resonant points and linearity**

Resonant response by driving piezo sinusoidally.



Several modes can be candidates to use for tuning

Several modes can be candidates to use for tuning. Higher end limited by present power supply. VS06 on 9- 25

K.Saito

ILC GDE Meeting at LICWS06 on 9-

12 March 2006 in Bangalore, India

# Harmonic excitation at 350Hz



Main component is cavity breezing mode. (Blue in right figure) Slow rolling mode coexists at very low frequency. (Red in right figure) (HV might be half!? Should be checked.)

# Harmonic excitation at 350Hz Frequency shift



 Frequency shift agrees with cavity length within a factor of 1.5.

#### K.Saito

## **Frequency spectrum from transient**



## **Cavity length and frequency shift**



 $\delta$ F well agreed with cavity length expansion x dF/dL\_static

# Preliminary Conclusion on the coaxial ball tuner system by Higo et al.

- With slow and fast tuners integrated in a realistic configuration, cavity response by harmonic excitation and transient excitation were studied.
- Resonances around 250Hz and 350Hz are significant, both in harmonic excitation and transient excitation.
- In resonant case,
  - 100V drive at room temperature at 350Hz makes cavity frequency tuning by 5kHz.
- In transient case,
  - Frequency shift agrees with cavity total length change
  - First slope appears 3msec later. The amplitude is 0.5kHz.
  - Around 15ms later, grows to large oscillation of about 2kHz.
  - 5Hz interval (200ms) later, oscillation damps << 10%.