Testing Lattice-QCD results with

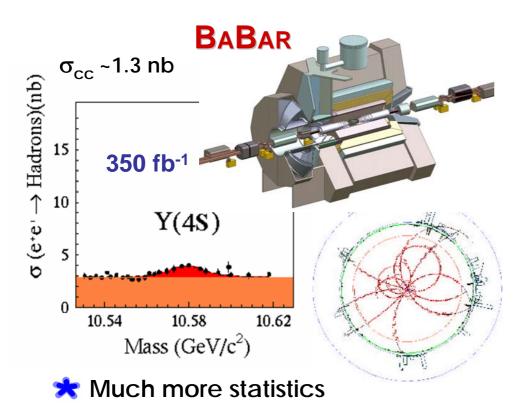
Charm Semileptonic Decays

at BaBar

A. Oyanguren
P. Roudeau, J. Serrano
(LAL-Orsay)

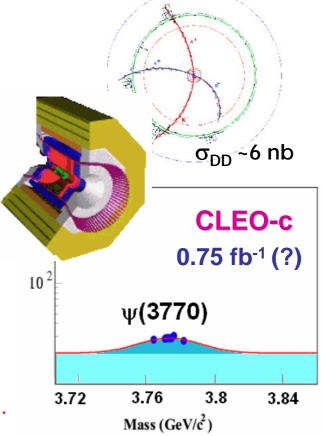
Outline:

- Purpose
- BaBar results (preliminary)
- Perspectives

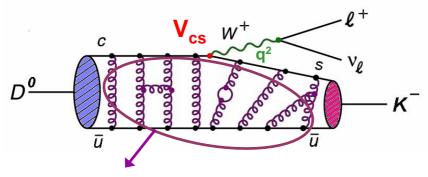

Puirpose

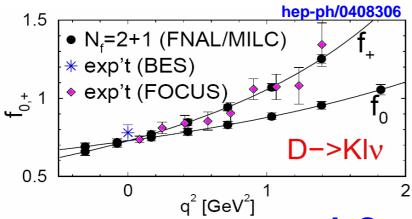
- New and improved techniques allow Lattice-QCD to provide very accurate values on hadron masses, decay constants, form factors, etc... but they still need approximations
- Experimentalists HAVE to check and validate these results and predictions →

Tests in the charm sector (leptonic and semileptonic decays) are a good place to validate Lattice-QCD evaluations


 We aim to perform very accurate measurements on charm semileptonic decays

Charm is NOT only matter of CLEO-c


* Better resolution



Testing the BaBar potential to do this kind of physics ...

 Measurement of the D → K ℓ v form factor (simplest channel: Cabibbo-allowed, one ff)

non-perturbative QCD →
parameterized by form factors
(easy quantities for Lattice)

$$rac{d\Gamma}{dq^2} = rac{G_f^2 | extbf{V}_{\! extsf{cs}}|^2 \;\; p_{\! extsf{K}}^3}{24\pi^3} | extbf{f}_{+}(extbf{q}^2)|^2$$

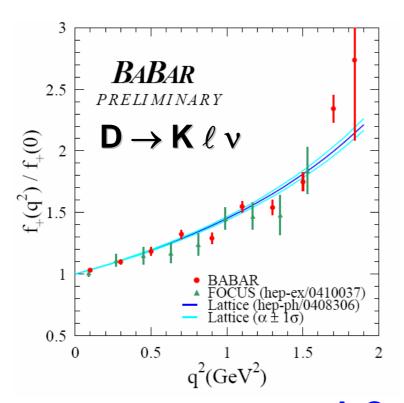
$$q^2 = (p_{\ell} + p_{\nu})^2 = (p_D - p_K)^2$$

Some parameterizations:

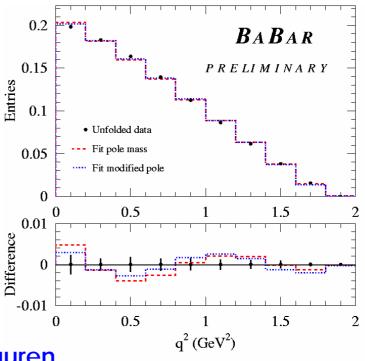
Pole form factor

KS, Z.Phys.C38 ('88) 511

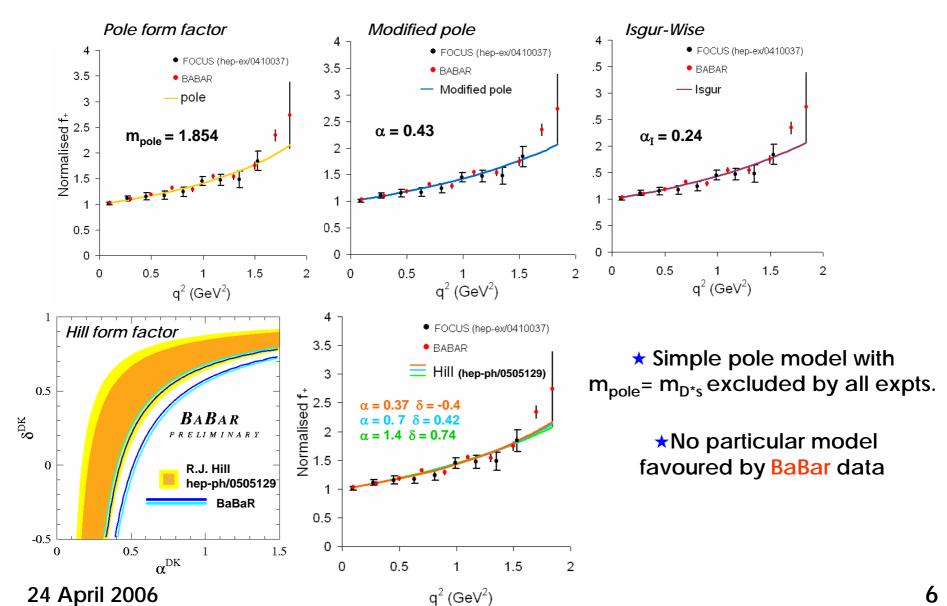
$$\left| f_{+}(q^{2}) \right| = \frac{f_{+}(0)}{1 - \frac{q^{2}}{m_{pole}^{2}}}$$


Modified pole BK, PLB 478 ('00) 417

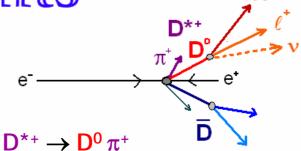
$$\left| f_{+}(q^{2}) \right| = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{D_{s}^{*}}^{2}} \right) \left(1 - \frac{\alpha_{pole}q^{2}}{m_{D_{s}^{*}}^{2}} \right)}$$

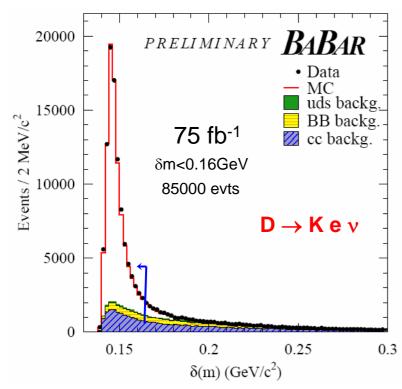

A. Oyanguren

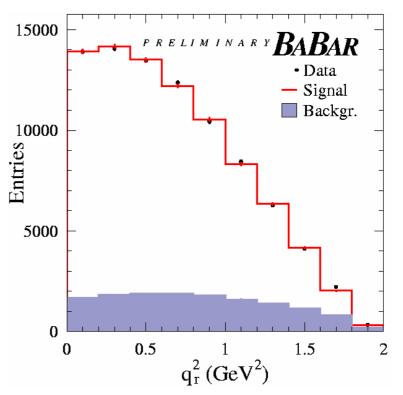
Experiment	m _{pole} (GeV/c) ²	$\alpha_{ m pole}$	Statistics
CLEO III	$1.89 \pm 0.05 \pm ^{0.04}_{0.08}$	$0.36 \pm 0.10 \pm ^{0.08}_{0.07}$	7 fb ⁻¹
FOCUS	$1.93 \pm 0.05 \pm 0.03$	$0.28 \pm 0.08 \pm 0.07$	13 k events
BELLE	$1.81 \pm 0.03 \pm 0.02$	$0.40 \pm 0.12 \pm 0.09 $ (e ⁻)	282 fb ⁻¹
		$0.66 \pm 0.11 \pm 0.09 (\mu^{-})$	
CLEO-c	$1.98 \pm 0.03 \pm 0.02$	$0.19 \pm 0.05 \pm 0.03$	280 pb ⁻¹
BaBar	$1.854 \pm 0.016 \pm 0.020$	$0.43 \pm 0.03 \pm 0.04$	75 fb ⁻¹


(FPCP '06 Prel.)
(Moriond '06 Prel.)

Lattice: $\alpha_{pole} = 0.50 \pm 0.04$

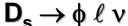

A. Oyanguren

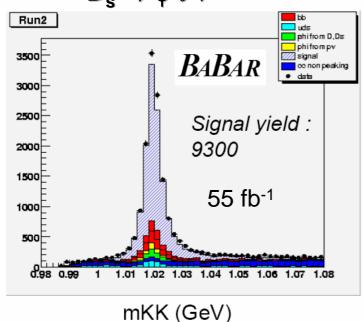



Results here use 75 fb⁻¹

BaBar data are 350 fb⁻¹

(analysis with all stat. in progress, also determination of $f_{\downarrow}(0)$)





A. Oyanguren

Perspectives

- D $\rightarrow \pi \ell \nu$ form factor (challenge: the background)
- D \rightarrow K $\pi \ell \nu$ (form factors, mass distribution)
- D_s semileptonic decays (Ph.D. J. Serrano)

- Best results from FOCUS (600 evts)
- **CLEO-c** @ **present: 72 pb⁻¹** (σD_sD_s* ~ 1nb) 750 pb⁻¹ expected in 2008

charm baryons (vast field basically unexplored)