Precision QCD for the Tevatron and LHC Keith Ellis

ellis@fnal.gov

Fermilab, CERN

β function in perturbation theory

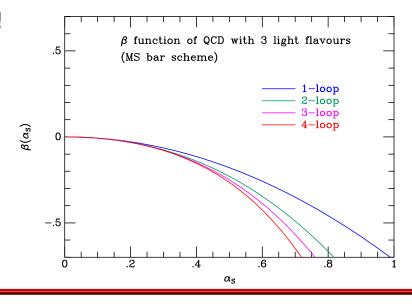
- **Running** of the QCD coupling α_S is determined by the β function,
- **The** β -function of QCD is negative.

$$\beta(\alpha_S) = -b\alpha_S^2(1 + b'\alpha_S) + \mathcal{O}(\alpha_S^4)$$

$$b = \frac{(11C_A - 2n_{lf})}{12\pi}, \ b' = \frac{(17C_A^2 - 5C_A n_{lf} - 3C_F n_{lf})}{2\pi(11C_A - 2n_{lf})},$$

where n_{lf} is number of "active" light flavors. b', (Caswell, Jones)

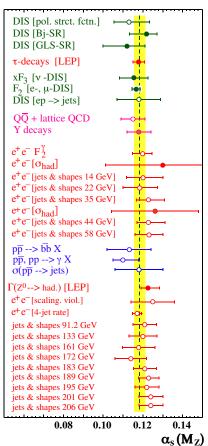
lacksquare eta-function now known up to four loops!



Current experimental results on α_S

Bethke,hep-ph/0407021

$$\alpha_S(M_Z) = 0.1182 \pm 0.0027, \overline{\text{MS}}, \text{NNLO}$$



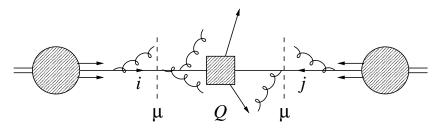
- lacksquare α_S is large at current scales.
- Measurement α_S is stable, $(\alpha_S(M_Z) = 0.1182 \pm 0.0027 \text{ in 2002}).$
- The decrease of α_S is quite slow as the inverse power of a logarithm.
- Higher order corrections are and will continue to be important.

The challenge

- The challenge is to provide the most accurate information possible to experimenters working at the Tevatron and the LHC.
- Proton (anti)proton collisions give rise to a rich event structure.
- Complexity of the events will increase as we pass from the Tevatron to the LHC.
- The goals
 - ★ To provide physics software tools which are both flexible and give the most accurate representations of the underlying theories.
 - To discover new efficient ways of calculating in perturbative QCD, (e.g. MHV amplitudes).

Hadron-hadron processes

In hard hadron-hadron scattering, constituent partons from each incoming hadron interact at short distance (large momentum transfer Q^2).



Form of cross section is

$$\frac{d\sigma}{dX} = \sum_{i,j} \sum_{\tilde{X}} \int dx_1 dx_2 \ f_i(x_1, \mu^2) f_j(x_2, \mu^2)$$

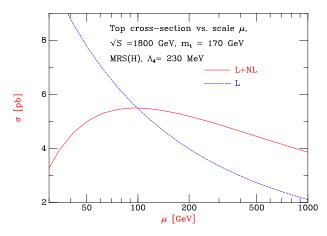
$$\times \hat{\sigma}_{ij}^{\tilde{X}}(\alpha_S(\mu^2), Q^2, \mu^2) \ F(\tilde{X} \to X, \mu^2)$$

where μ^2 is factorization scale and $\hat{\sigma}_{ij}$ is subprocess cross section for parton types i, j and X represents the hadronic final state.

Hadron-hadron processes II

- Short distance cross section $\hat{\sigma}_{ij}$ is calculable as a perturbation series in α_S .
- Notice that factorization scale is in principle arbitrary: affects only what we call part of subprocess or part of initial-state evolution (parton shower), eg. if

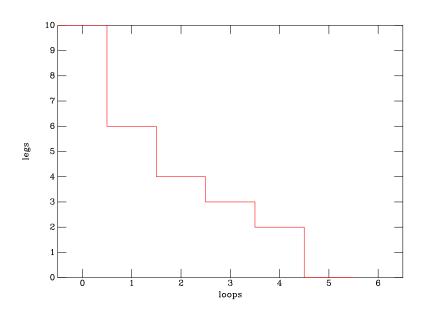
$$\sigma = q(x_1, \mu^2) q(x_2, \mu^2) \otimes \left[\alpha_S^2(\mu^2) f^{(0)} + \alpha_S^3(\mu^2) f^{(1)} \right], \quad \frac{d\sigma}{d \ln \mu^2} = O(\alpha_S^4)$$



There are also interactions between spectator partons, leading to soft underlying event and/or multiple hard scattering. This an important issue, but I will not talk further about it.

Many loops or many legs?

For radiative corrections to hard processes the state of the art can calculate loops or legs, but not both.



- At LHC, trend is toward large numbers of legs.
- Most phenemonologically interesting processes involve vector bosons, leptons, missing energy, heavy flavours.
- Many processes can contribute to the same signature, argues for one (or several) unified approaches.
- NNLO desirable everywhere, but probably only available for a few specialized processes.
- For LHC theoretical effort should be given to multi-leg processes at one loop (NLO).

Why NLO?

The benefits of higher order calculations are:-

- Less sensitivity to unphysical input scales (eg. renormalization and factorization scales)
- First prediction of normalization of observables at NLO
- Hence more accurate estimates of backgrounds for new physics searches.
- Confidence that cross-sections are under control for precision measurements.
- It is a necessary prerequisite for other techniques matching with resummed calculations, (eg. MC@NLO).
- More physics
 - ★ Parton merging to give structure in jets.
 - ⋆ Initial state radiation.
 - ⋆ More species of incoming partons enter at NLO.

An experimenter's wishlist

Run II Monte Carlo Workshop

Single Boson	Diboson	Triboson	Heavy Flavour
$W+ \le 5j$	$WW+ \le 5j$	$WWW+ \le 3j$	$t\bar{t}+\leq 3j$
$W + b\bar{b} \le 3j$	$W + b\bar{b} + \le 3j$	$WWW + b\bar{b} + \le 3j$	$t\bar{t} + \gamma + \le 2j$
$W + c\bar{c} \le 3j$	$W + c\bar{c} + \le 3j$	$WWW + \gamma\gamma + \le 3j$	$t\bar{t} + W + \le 2j$
$Z+\leq 5j$	$ZZ+\leq 5j$	$Z\gamma\gamma+\leq 3j$	$t\bar{t} + Z + \le 2j$
$Z + b\bar{b} + \le 3j$	$Z + b\bar{b} + \le 3j$	$ZZZ+ \leq 3j$	$t\bar{t} + H + \le 2j$
$Z + c\bar{c} + \le 3j$	$ZZ + c\bar{c} + \leq 3j$	$WZZ+ \leq 3j$	$t\bar{b} \le 2j$
$\gamma + \leq 5j$	$\gamma\gamma+\leq 5j$	$ZZZ+ \leq 3j$	$b\bar{b}+\leq 3j$
$\gamma + b\bar{b} \le 3j$	$\gamma\gamma + b\bar{b} \le 3j$		single top
$\gamma + c\bar{c} \le 3j$	$\gamma\gamma + c\bar{c} \le 3j$		
	$WZ+ \leq 5j$		
	$WZ + b\bar{b} \le 3j$		
	$WZ + c\bar{c} \le 3j$		
	$W\gamma + \leq 3j$		
	$Z\gamma + \leq 3j$		

A more realistic list

Les Houches workshop 2005

	process $(V \in \{Z, W, \gamma\})$	relevant for
*	1. $pp \rightarrow V V$ jet 2. $pp \rightarrow t\bar{t} b\bar{b}$ 3. $pp \rightarrow t\bar{t} + 2$ jets 4. $pp \rightarrow V V b\bar{b}$ 5. $pp \rightarrow V V + 2$ jets 6. $pp \rightarrow V + 3$ jets 7. $pp \rightarrow V V V$	$tar{t}H$, new physics $tar{t}H$ $tar{t}H$ VBF $\to H \to VV$, $tar{t}H$, new physics VBF $\to H \to VV$ various new physics signatures SUSY trilepton

*

What is MCFM?

- A parton-level event integrator for many processes
- Includes processes involving heavy quarks, vector and Higgs bosons, missing energy, with spin correlations in decay.
- Distributions of all variables are available.
- Most processes are included at NLO, with all the attendant benefits.
 - ⋆ reduced dependence on unphysical scales.
 - ★ better estimate of rates for physical processes.
 - ★ More than one parton in a jet, giving (primitive) structure to the jet.
 - ★ Better estimate than parton shower, for well separated jets, as required for the decays of heavy objects.
- Many processes included in a unified framework, allowing easy comparison

MCFM overview

John Campbell and R.K. Ellis

Parton level cross-sections predicted to NLO in α_S

- \oplus less sensitivity to μ_R , μ_F , rates are better normalized, fully differential distributions.
- low particle multiplicity (no showering), no hadronization, hard to model detector effects

References

- Calculation of the Wbb background to a WH signal at the Tevatron. R.K. Ellis, Sinisa Veseli, hep-ph/9810489.
- Vector boson pair production at the Tevatron, including all spin correlations of the boson decay products. J.M. Campbell, R.K. Ellis, hep-ph/9905386.
- Calculation of the Zbb and other backgrounds to a ZH signal at the Tevatron. J.M. Campbell, R.K. Ellis, hep-ph/0006304.
- Next-to-leading order corrections to W+2 jet and Z+2 jet production at hadron colliders. John Campbell, R.K. Ellis, hep-ph/0202176.
- Higgs Boson Production in Association with a Single Bottom Quark. J. Campbell, R.K. Ellis, F. Maltoni, S. Willenbrock, hep-ph/0204093.
- Next-to-Leading Order QCD Predictions for W+2 jet and Z+2 jet Production at the CERN LHC. J. Campbell, R.K. Ellis and D. Rainwater, hep-ph/0308195.
- Associated Production of a Z Boson and a Single Heavy Quark Jet. J. Campbell, R.K. Ellis, F. Maltoni, S. Willenbrock, hep-ph/0312024.
- Single top production and decay at next-to-leading order, J. Campbell, R.K. Ellis and F. Tramontano, hep-ph/0408158.
- Next-to-leading order corrections to WT production and decay, J. Campbell, and F. Tramontano, hep-ph/0506289.
- J. Campbell, R. K. Ellis, F. Maltoni and S. Willenbrock, Production of a Z boson and two jets with one heavy-quark tag, hep-ph/0510362.

Shortcomings of MCFM

- No attachment of parton shower, (cf MC@NLO) Webber, Frixione ...), (but, NLO is a necessary prerequisite for MC@NLO)
- No hadronization model, so hard to model detector effects.
- No inclusion of pure QCD processes, such as $gg \to gg, gg \to ggg, gg \to gggg$, (cf NLOJet++)

 Nagy, Giele, Kilgore
- Weighted events

MCFM v. 5.1

- MCFM v.5.1 released June 1st, 2006
- Available for download at http://mcfm.fnal.gov
- Processes added in NLO, $(f \equiv q, \bar{q}, g)$, generic parton)

$$f + f \to W^{\pm} + t$$

$$f + b \to Z^{0} + b + f$$

$$f + c \to Z^{0} + c + f$$

Processes added in LO

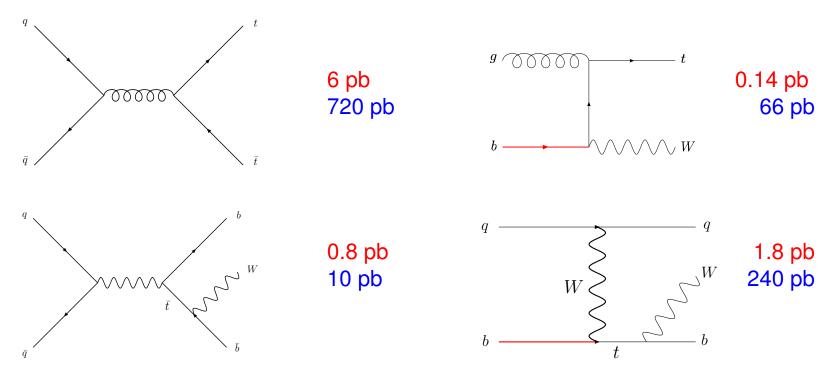
$$f + f \to Z^{0}(\to e^{-} + e^{+}) + c + c$$

$$f + f \to t\bar{t} + g$$

$$f + f \to H + f + f + f \text{[in heavy top limit]}$$

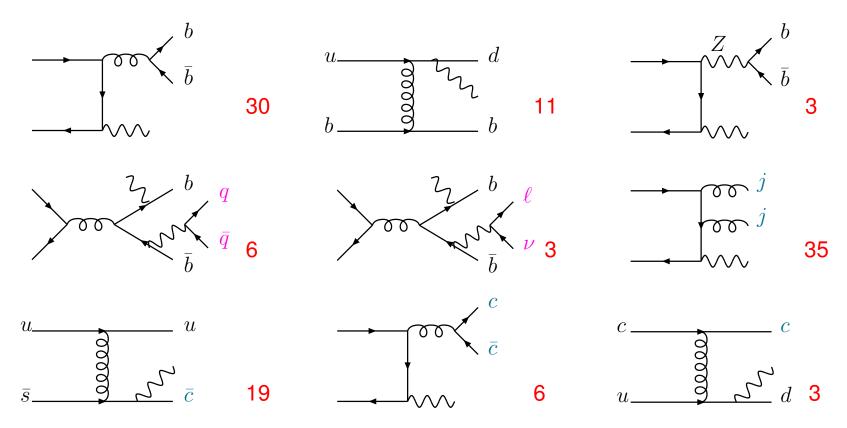
$$f + f \to W^{-}(\to e^{-} + \nu) + t + b \text{[massive b]}$$

Top production rates



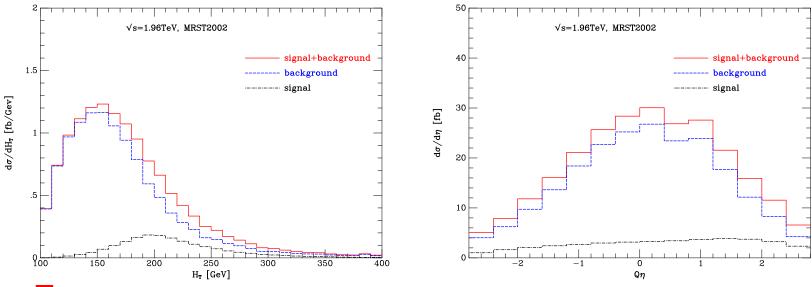
- All cross-sections are known to NLO (Tevatron / LHC)
- The total single top cross-section is smaller than the $t\bar{t}$ rate by about a factor of two, at both machines

Backgrounds for single top



- Cross-sections in fb include nominal tagging efficiences and mis-tagging/fake rates. Calculated with MCFM, most at NLO at $\sqrt{S}=2$ TeV.
- Rates are 7 fb and 11 fb for s- and t-channel signal

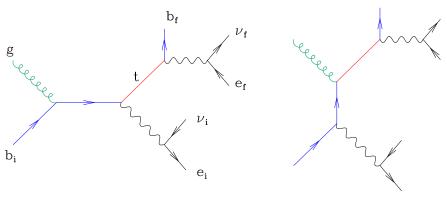
Single top signal vs. backgrounds



- \blacksquare $H_T = \text{scalar sum of jet, lepton and missing } E_T$
- \blacksquare $Q\eta$ is the product of the lepton charge and the rapidity of the untagged jet, useful for picking out the t-channel process
- Signal:Background (with our nominal efficiencies) is about 1:6.
- it will take 1.5 fb⁻¹ to have evidence (3σ) for single top from a single experiment at the Tevatron (Gresele, Moriond 2006).

Wt production

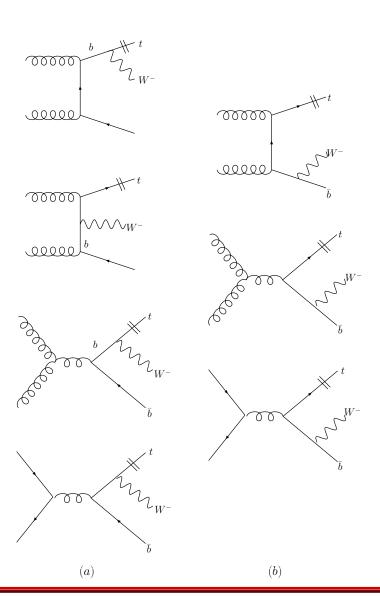
Campbell, Tramontano



- The last of the single top processes.
- Wt process important at LHC, negligible at Tevatron.

- \blacksquare Rate depends on b-quark distribution.
- Top quark, (shown in red) is taken onshell, but all spin correlations are retained.
- Including real radiation we obtain both diagrams with and without a resonant \bar{t} propagator.
- The former are properly considered as contributions to $t\bar{t}$ production, whereas the latter are contributions to single top production.

Separation of Wt and $t\bar{t}$ diagrams



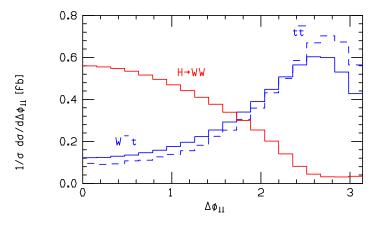
- diagrams (a) are "genuine" single top contributions, whereas diagrams (b) contain doubly resonant propagators.
- Apply a veto on the p_T of the additional \bar{b} quark which appears in NLO.
- Choose factorization scale μ_F of the same order as the maximum p_T which is allowed.
- When the $p_T > \mu_F$ doubly resonant diagrams dominate and a better description is obtained by using the $t\bar{t}$ process.

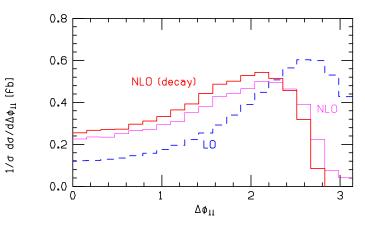
Wt background to $H \rightarrow WW^*$

$$g + g \to H \longrightarrow W^- + W^+$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Process	σ [fb]
H-> WW($m_H = 155 \text{ GeV}$)	58.1
continuum WW	270.5
$t ar{t}$	43.9
Wt	40.1





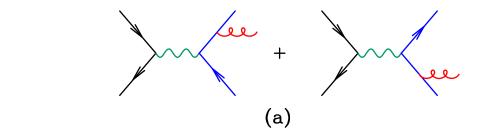
- \blacksquare $t\bar{t}$ and Wt backgrounds are of similar size.
- \blacksquare Shape of contribution of Wt process to Dittmar-Dreiner angle modified at NLO

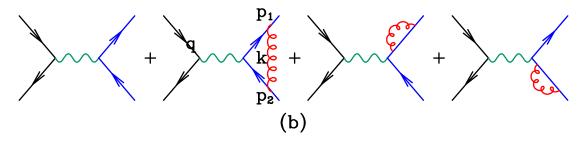
Automatic NLO corrections

- What is needed is an automatic procedure to calculate NLO corrections (MadLoop?).
- Current stumbling block is the calculation of virtual corrections.
- The virtual corrections contain singularities from the regions of collinear and soft gluon emission, (and in general also UV divergences).
- Divergences are normally controlled by dimensional regularization. A completely numerical procedure using, say, a gluon mass could cause problems with gauge invariance and is hence deprecated.

Example: e^+e^- total rate

Consider the corrections to total $e^+e^- \rightarrow q\bar{q}$ rate.





$$\sigma^{q\bar{q}g} = 2\sigma_0 \frac{\alpha_S}{\pi} H(\epsilon) \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^2 + \mathcal{O}(\epsilon) \right].$$

Soft and collinear singularities in real emisssion amplitudes (a) are regulated, appearing instead as poles at D=4.

Virtual gluon contributions

Virtual gluon contributions (b): using dimensional regularization again

$$\sigma^{q\bar{q}} = 3\sigma_0 \left\{ 1 + \frac{2\alpha_S}{3\pi} H(\epsilon) \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \pi^2 + \mathcal{O}(\epsilon) \right] \right\}.$$

Adding real and virtual contributions, poles cancel and result is finite as $\epsilon \to 0$. R is an infrared safe quantity.

$$R = 3\sum_{q} Q_q^2 \left\{ 1 + \frac{\alpha_S}{\pi} + \mathcal{O}(\alpha_S^2) \right\}.$$

■ However the virtual corrections to $W^+ \to u\bar{d}gggg$ are not so easily calculated.

Historical perspective

We want to consider tensor integrals of the form

$$I^{\mu_1...\mu_M} = \int \frac{d^D l}{i\pi^{D/2}} \, \frac{l^{\mu_1}...l^{\mu_M}}{d_1 d_2...d_N}$$

where $d_i = (l + \sum_{j=1}^{j=i} p_j)^2$ are the standard propagator factors.

Passarino and Veltman (1979) wrote a form factor expansion for one-loop integrals, with $M \leq N, N \leq 4$. For example,

$$\int \frac{d^D l}{i\pi^{D/2}} \frac{l^{\mu}}{l^2(l+p_1)^2(l+p_1+p_2)^2} = C_1(p_1,p_2)p_1^{\mu} + C_2(p_1,p_2)p_2^{\mu}$$

Contracting with p_1 and p_2 and using the identities

$$l \cdot p_1 = \frac{1}{2}[(l+p_1)^2 - l^2 - p_1^2], l \cdot p_2 = \frac{1}{2}[(l+p_1+p_2)^2 - (l+p_1)^2 - p_2^2 - 2p_1 \cdot p_2]$$

Historical perspective II

We derive a linear equation expressing C_1, C_2 in terms of scalar integrals

$$\begin{pmatrix} 2p_1 \cdot p_1 & 2p_1 \cdot p_2 \\ 2p_2 \cdot p_1 & 2p_2 \cdot p_2 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$

where
$$R_1 = [B_0(p_1 + p_2) - B_0(p_2) - p_1^2 C_0(p_1, p_2)]$$

and
$$R_2 = [B_0(p_1) - B_0(p_1 + p_2) - (p_2^2 + 2p_1 \cdot p_2) C_0(p_1, p_2)]$$

$$C_0(p_1, p_2) = \int [dl] \frac{1}{l^2(l+p_1)^2(l+p_1+p_2)^2}, B_0(p_1) = \int [dl] \frac{1}{l^2(l+p_1)^2}$$

Solution involves the inverse of the Gram matrix, $G_{ij} \equiv 2p_i \cdot p_j$

$$G^{-1} = \begin{pmatrix} +p_2 \cdot p_2 & -p_1 \cdot p_2 \\ -p_1 \cdot p_2 & +p_1 \cdot p_1 \end{pmatrix} / [2(p_1 \cdot p_1 p_2 \cdot p_2 - (p_1 \cdot p_2)^2)]$$

Historical perspective III

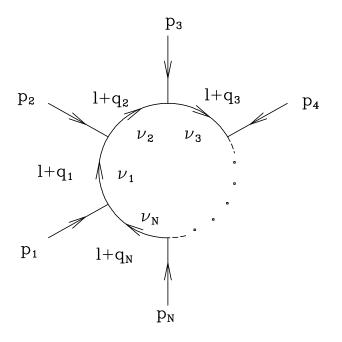
- M. Veltman wrote a CDC program for numerical evaluation of the formfactors in processes with only UV divergences, Utrecht (1979).
- He dealt with exceptional regions, (e.g. regions where the Gram determinant vanishes), by implementing parts of the program in quadruple precision.
- Translation and improvement by Van Oldenborgh (1990) and further work on interface by T. Hahn and M. Perez-Victoria (1998).

However this is not sufficient for our needs.

- We are interested in processes with more than 4 external legs.
- We are often interested in loop processes with collinear and soft singularities due to the presence of massless particles. These are most commonly (and elegantly) controlled by dimensional regularization.

Recursion relations I

Define generalized scalar integrals



$$d_i \equiv (l+q_i)^2$$

$$q_i \equiv \sum_{j=1}^i p_j$$

$$q_N \equiv \sum_{j=1}^N p_j = 0,$$

$$I(D; \nu_1, \nu_2, \dots, \nu_N) = I(D; \{\nu_k\}_{k=1}^N) \equiv \int \frac{d^D l}{i\pi^{D/2}} \frac{1}{d_1^{\nu_1} d_2^{\nu_2} \cdots d_N^{\nu_N}},$$

Form-factor expansion

Davydchev

- For form factor expansion in terms of the q's the coefficients are generalized scalar integrals in shifted dimensionalities
- e.g., the rank-1 and rank-2 tensor integrals with N external legs can be decomposed as

$$I^{\mu_1}(D; q_1, \dots, q_N) = \sum_{i_1=1}^N I(D+2; \{1+\delta_{i_1k}\}_{k=1}^N) \ q_{i_1}^{\mu_1}$$

$$= I(D+2; 2, 1, 1, \dots, 1) \ q_1^{\mu_1} + I(D+2; 1, 2, 1, \dots, 1) \ q_2^{\mu_1}$$

$$+ \dots + I(D+2; 1, 1, 1, \dots, 2) \ q_N^{\mu_1} \ .$$

$$I^{\mu_1\mu_2}(D; q_1, \dots, q_N) = -\frac{1}{2} I(D+2; 1, 1, 1, \dots, 1) \ g^{\mu_1\mu_2}$$

$$+ 2 I(D+4; 3, 1, 1, \dots, 1) \ q_1^{\mu_1} q_1^{\mu_2}$$

$$+ I(D+4; 2, 2, 1, \dots, 1) \ \left(q_1^{\mu_1} q_2^{\mu_2} + q_1^{\mu_2} q_2^{\mu_1}\right) + \dots$$

Recursion relations II

Using integration by parts methods we derive the basic recursion relation

$$(\nu_{l} - 1)I(D; \{\nu_{k}\}_{k=1}^{N})$$

$$= -\sum_{i=1}^{N} S_{li}^{-1}I(D - 2; \{\nu_{k} - \delta_{ik} - \delta_{lk}\}_{k=1}^{N})$$

$$- b_{l}(D - \sigma)I(D; \{\nu_{k} - \delta_{lk}\}_{k=1}^{N}).$$

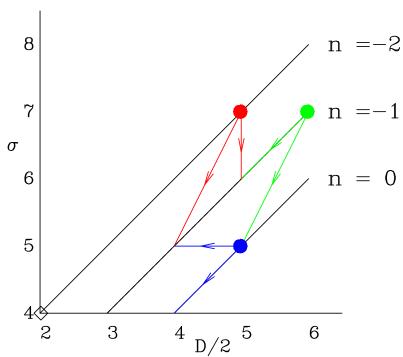
$$\sigma \equiv \sum_{i=1}^{N} \nu_i; \quad b_i \equiv \sum_{j=1}^{N} S_{ij}^{-1}; \quad B \equiv \sum_{i=1}^{N} b_i = \sum_{i,j=1}^{N} S_{ij}^{-1}.$$

The strategy is to reduce more complicated integrals to a set of simpler basis integrals which are known analytically.

Hence the method is seminumerical.

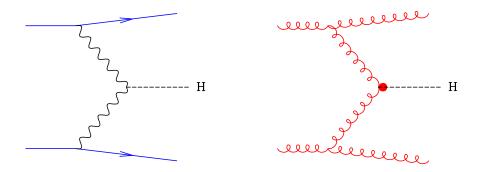
Recursion relations (cont)

Example: reduction of boxes, $\sigma = \sum_{i} \nu_{i}$



Using the basic identity (red lines) and other subsidiary identities (blue and green lines) one can always arrive at the basis integral, (four-dimensional box), denoted by a diamond, (or integrals with fewer external legs).

H+2 jet calculation



- \blacksquare NLO corrections to W-fusion mechanism already calculated by many authors.
- All the elements are in place for a full NLO Higgs + 2 jets calculation via gluon fusion mechanism
 - ★ Born level calculation Higgs + 4 partons
 - * Real calculation Higgs + 5 partons, Del Duca et al, Dixon et al, Badger et al
 - ★ Virtual calculation

Ellis, Giele and Zanderighi, presented here

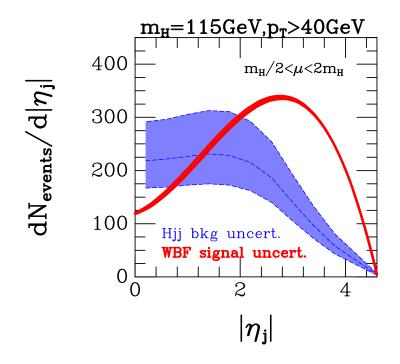
★ Subtraction terms

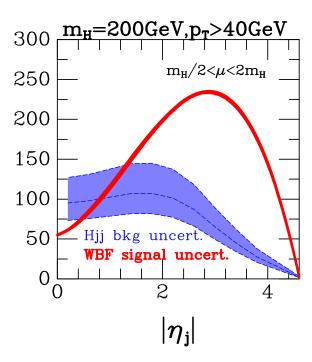
Campbell, Ellis and Zanderighi, in preparation

Comparison of signal and "background"

Large uncertainty in blue curves because NLO correction not included.

Berger, Campbell





Proof of principle

Ellis, Giele, Zanderighi

Use the effective theory $(m_t \to \infty)$ for Hgg coupling

$$\mathcal{L}_{\text{eff}} = \frac{1}{4} A(1+\Delta) H G^a_{\mu\nu} G^{a\mu\nu} .$$

 $G^a_{\mu\nu}$ is the field strength of the gluon field and H is the Higgs-boson field, $A=\frac{g^2}{12\pi^2v}$ where g is the bare strong coupling and v is the vacuum expectation value parameter, $v^2=(G_F\sqrt{2})^{-1}=(246~{\rm GeV})^2$. Δ is a finite correction. Calculate virtual corrections to

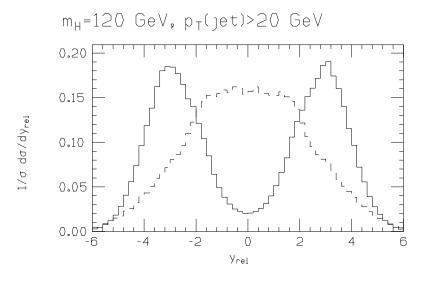
- A) $H \rightarrow q\bar{q}q'\bar{q}'$, (30 diagrams),
- $B) \ H \rightarrow q\bar{q}q\bar{q}, \ \ (60 \text{ diagrams}),$
- $C) \;\; H \quad \rightarrow \quad q\bar{q}gg, \quad (191 \; {\rm diagrams}),$
- D) $H \rightarrow gggg$, (739 diagrams).

Comparison of numerical and analytic results for $H \rightarrow$ four partons

	$\frac{1}{\epsilon^2}$	$rac{1}{\epsilon}$	1
A_B	0	0	12.9162958212387
$A_{V,N}$	-68.8869110466063	-114.642248172519	120.018444115458
$A_{V,A}$	-68.8869110466064	-114.642248172523	120.018444115429
B_B	0	0	858.856417157052
$B_{V,N}$	-4580.56755817094	-436.142317955208	26470.9608978350
$B_{V,A}$	-4580.56755817099	-436.142317955660	26470.9608978346
C_B	0	0	968.590160211857
$C_{V,N}$	-8394.44805516930	-19808.0396331354	-1287.90574949112
$C_{V,A}$	-8394.44805516942	-19808.0396331363	not known analytically
D_B	0	0	3576991.27960852
$D_{V,N}$	$\textbf{-4.29238953553022} \cdot 10^{7}$	-1.04436372655580 ·10 ⁸	-6.79830911471604·10 ⁷
$D_{V,A}$	-4.29238953553022·10 ⁷	$-1.04436372655580 \cdot 10^8$	not known analytically

Higgs+ 3 jets at LO

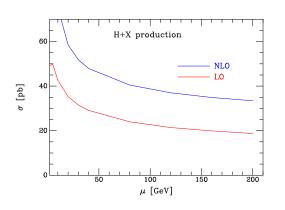
- Implementation of gg o Hggg + other diagrams.
- Distribution of the rapidity of the third jet, y_{j_3} measured with respect to the rapidity average of the tagging jets. $y_{rel} = y_{j_3} (y_{j_1} + y_{j_2})/2$ cf, Del Duca, Frizzo, Maltoni

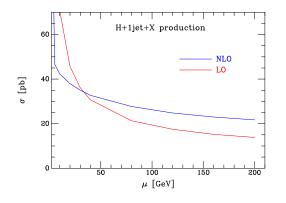


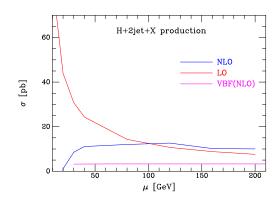
- $|y_{j_1} y_{j_2}| > 4.2,$ $y_{j_1} \cdot y_{j_2} < 0,$ $m_{jj} > 600 \text{ GeV}$
- Rapidity of third jet in Vectorboson fusion (solid line) closer to tagging jets than in gluon fusion (dotted line).

H+2 jet results

- Define jets with $p_t(jet) > 20$ GeV, $|y_j| < 5$, $R_{jj} > 0.6$
- We vary renormalization and factorization scale together.





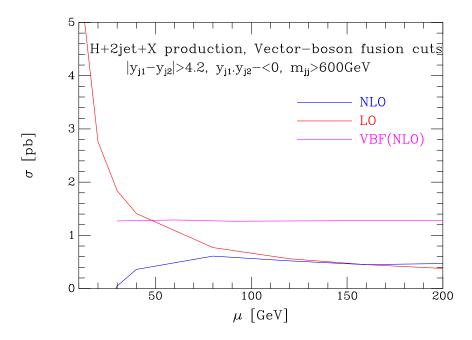


- H + 0jet, H + 1 jet inclusive results from MCFMv5.0
- Our preliminary results indicate the Higgs + 2 jet inclusive rate is the better behaved at NLO than the rate for Higgs+X rate, or Higgs + 1 jet+X.
- Suggests that a relatively high scale $\mu \sim m_H$ is appropriate for the Higgs.
- NNLO known for Higgs + X,

Harlander+Kilgore, Anastasiou+Melnikov

H+2 jet results, continued

- When we impose cuts to enhance vector boson fusion, (without central jet veto) we obtain a similar pattern
- Too early to comment on particular parton subprocesses, individual contributions, separated factorization and normalization scale dependence.



Conclusions

- A serious program is underway to calculate NLO corrections to SM processes, relevant for LHC physics. MCFM is a beginning, but it is clearly not enough.
- Release of MCFM version 5.1, new processes, $pp \to Wt, pp \to Zbj$, bug fixes, general housekeeping, (available at mcfm.fnal.gov)
- Benefits of a unified approach are beginning to be seen. Calculation of signal and background in same program, e.g. for single top.
- Preliminary results for Higgs + 2 jets at NLO indicate
 - ⋆ a good prediction and stable result for H+2jets
 - * viability of seminumerical method