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SAFETY ISSUE 
Forecast wildfire behavior 
in real time  
• help fire emergency responses 
• strengthen firefighting actions 

How can remote sensing 
help us to design on-
demand high-fidelity 
simulations?

Smoke and emissions

Fuels and ecology

Flame dynamics

Topography

Home ignition

Micro-scale 
meteorology

WILDFIRE COMPLEXITY 
Current models are far from 
being predictive 
• wide range of length scales 
• a fire creates its own weather 

(interactions between a fire and 
the near-surface atmosphere) 

• poorly-defined biomass fuels

The wildfire problem: Talk’s guideline



3Mélanie Rochoux - 2017 TDMF workshop

The wildfire problem: Which modeling viewpoint for safety issue?

spatio-temporal scales

ignition 
• 1 mm - 10 m  
• seconds/minutes

regional 
• 10-100 km  
• hours/days

✗ Too computationally 
expensive at large scale

BUOYANT FLAME BURNING AREA PLUME DISPERSION
✗ No information on the 
combustion parameters 

✓Suitable for regional-scale fire 
simulations

Fire front

Burnt area
Unburnt 
vegetation

Introduction
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Introduction

(1) Data assimilation algorithm 
• Ensemble-based Kalman filtering 
• Link with uncertainty quantification methods 

(2) Position errors  
• Amplitude errors versus Position errors 
• New measure to quantity front shape similarity 

(3) Object-oriented data assimilation 
• Data assimilation with front shape similarity measure 
• Joint state-parameter estimation

Talk’s outline

The wildfire problem as 
guideline



Principles of data assimilation
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observations

background

(prior, forecast)
analysis

(posterior, update)

xb

xa

Time

Quantity of 
interest

REALITY

FORECAST

UPDATE

yo

The analysis minimizes the cost function

least-squares type data fitting functional with regularization term

J (x) = ||G(x) � yo||2R�1 + ||x � xb||2B�1 J (xa) = min J (x)



Principles of data assimilation

6

DATA ASSIMILATION  |  POSITION ERRORS  |  OBJECT-ORIENTED DATA ASSIMILATION 

Mélanie Rochoux - 2017 TDMF workshop

observations

background

(prior, forecast)
analysis

(posterior, update)

xb

xa

Time

Quantity of 
interest

REALITY

FORECAST

UPDATE

yo

• Each source of information is weighted by its uncertainty 
• Assumption of Gaussian error statistics 

• unbiased error ||x||2B�1 = xT B�1 x• error covariance model

observation error 
covariance matrix R

B
background error 
covariance matrix analysis ≣ barycenter

• Euclidean-type norm



Kalman filters formulate the analysis as a correction of the background

FORECAST

Ensemble-based Kalman filtering
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observations

background

(prior, forecast)
analysis

(posterior, update)

xb

xa

Time

Quantity of 
interest

REALITY

yo

xa = xb + K
�
yo � G(xb)

�
K = BGT �

GBGT + R
��1

statistical estimation of the gain in the ensemble 
Kalman filter (EnKF)

linear combination of model simulations to find 
more optimal estimates

UPDATE



OBSERVATION SPACE

Ensemble-based Kalman filtering
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INPUT SPACE

Sources of uncertainties 
(physical parameters, external 
forcing, initial condition…)

The forecast step can be considered 
as a sensitivity analysis and 
uncertainty quantification step

OBSERVATION OPERATOR G

Observation

yo

xb1

xb2

Forecast

yb = G(xb)

K = Cxy (Cyy + R)�1

Cxy = BGT =
Ne�

k=1

�
xb,(k) � xb

��
G(xb,(k)) � G(xb)

�T

Ne � 1

Cyy = GBGT =
Ne�

k=1

�
G(xb,(k)) � G(xb)

� �
G(xb,(k)) � G(xb)

�T

Ne � 1

Estimation of the Kalman gain using a 
Monte Carlo random sampling



Ensemble-based Kalman filtering
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INPUT SPACE

Sources of uncertainties 
(physical parameters, external 
forcing, initial condition…)

OBSERVATION OPERATOR

The forecast step can be considered 
as a sensitivity analysis and 
uncertainty quantification step

OBSERVATION SPACE

Forecast

G

yo

Observation

xb1

xb2

yb = G(xb)

xa1

xa2

DATA ASSIMILATION  
FEEDBACK

Analysis

ya = G(xa)Based on sensitivity measure between 
the control variables and the observed 
quantities  

“Distance”



Wildfire guideline
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(Q1) Which observations 
are available?

(Q2) How to compare 
observations and 
simulations?

(Q3) How to limit the 
computational cost of 
data assimilation?

Mélanie Rochoux - 2017 TDMF workshop

Data-driven wildfire spread modeling



Wildfire guideline
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Mid-InfraRed (MIR) imagery

Visible

© J. Kaiser

Mid-InfraRed

© R. Paugam © E. Ellicott



Wildfire guideline
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Validation test - FireFlux I experiment
• Algorithm: Ensemble Kalman filter (EnKF) for parameter estimation 
• Control variables: Spatially-distributed wind magnitude and direction 
• Metric: Euclidean distance between observation and simulated front

Rochoux et al. (2014,2015), Natural 
Hazards and Earth System Sciences

Zhang et al. (2017), Fire Safety Journal
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Introduction

(1) Data assimilation algorithm 
• Ensemble-based Kalman filtering 
• Link with uncertainty quantification methods 

(2) Position errors  
• Amplitude errors versus Position errors 
• New measure to quantity front shape similarity 

(3) Object-oriented data assimilation 
• Data assimilation with front shape similarity measure 
• Joint state-parameter estimation

Talk’s outline

The wildfire problem as 
guideline



Data assimilation challenge
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How to address position errors for complex front topology?

model

observations



Limitation of point-wise local metrics 
• Several metrics are usually required to satisfyingly compare two fields 
• Double penalty effect 
➡ A misplaced structure is predicted where it should not be and is 

not predicted where it should be 
• Small spatial and temporal shift of the structure position 
• Failure of standard data assimilation methods when position errors 

are large, for instance when observations are infrequent 
➡ Standard treatment of amplitude errors (Euclidean metrics)  
➡ Generation of artificial patterns

Data assimilation challenge for tracking structures
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MODEL

OBS

Ensemble of 10 
similar patterns 

Barycenter of type L2  
(Euclidean distance)

Adequate metric
Doucet and Cuturi (2014), 
Proceedings of Machine 
Learning Research



Limitation of point-wise local metrics 
• Several metrics are usually required to satisfyingly compare two fields 
• Double penalty effect 
➡ A misplaced structure is predicted where it should not be and is 

not predicted where it should be 
• Small spatial and temporal shift of the structure position 
• Failure of standard data assimilation methods when position errors 

are large, for instance when observations are infrequent 
➡ Standard treatment of amplitude errors (Euclidean metrics)  
➡ Generation of artificial patterns

Data assimilation challenge for tracking structures
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MODEL

OBS

Chen and Snyder (2007), Monthly 
Weather Review

Beezley and Mandel (2008), Tellus

Hurricane tracking

Ensemble 
Kalman 
filter (EnKF)

prior

obs

analysis



“It is easy to perceive coherent structures by eye, but a full precise mathematical 
description is still a challenge.”

Data assimilation challenge for tracking structures
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Oil spill in the ocean

Chlorophylle concentration in 
the ocean with cloud occlusion 


Precipitation pattern in meteorology

Cardiac 
electrophysiology

Flaming 

combustion



How to track a moving object? How to represent uncertainties in the 
object shape and location? 
• Scale separation (ex: wavelet transform) 
• Fuzzy method (ex: prior field smoothing) 
• Identification and comparison of main field features 
• Field deformation or field displacement (ex: Wasserstein distance, 

Chan-Vese functional)

What can we learn from image segmentation theory?
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FOCUS

Collin et al. (2015), Journal of 
Computational Physics

Arbogast et al. (2016), Quarterly 
Journal of the Royal Meteorological 
Society

Nelson Feyeux (2016), Transport 
optimal pour l’assimilation de 
données d’images, Thèse de 
doctorat, Communauté Université 
Grenoble Alpes

“observation”

“model”

Chan-Vese data fitting 
functional used in image 

segmentation 

FALSE 

ALARMS

MISSES

observation model

HITS

• minimization of hits 
• maximization of misses



FALSE 

ALARMS

MISSES

observation model

HITS

Similarity measure between “target” and simulated fronts

Chan-Vese contour fitting functional
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“outside” measuring MISSES

(mean of obs. in simulated unburnt area)

J (φ, yo) =

�

Ω
Hv(φ) [yo � C1(y

o,φ)]
2
+ (1� Hv(φ)) [yo � C0(y

o,φ)]
2
dx

level-set formalism
 Chan and Vese (2001), IEEE 
Transactions on Image Processing

J (x) = ||G(x) � yo||2

“inside” measuring HITS

(mean of obs. in simulated burnt area)

Φ > 0,Hv = 1
Φ < 0,Hv = 0

Minimizing the functional acts on the 
contour of the simulated area to match the 

shape of the observed front. 



Behavior of the front shape similarity measure

Chan-Vese contour fitting functional
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“outside” measuring MISSES

(mean of obs. in simulated unburnt area)

J (φ, yo) =

�

Ω
Hv(φ) [yo � C1(y

o,φ)]
2
+ (1� Hv(φ)) [yo � C0(y

o,φ)]
2
dx

“inside” measuring HITS

(mean of obs. in simulated burnt area)

Case 1: observations 
included in simulated  
burnt area 

Φ > 0,Hv = 1

Φ < 0,Hv = 0

Hv = 1, 0 < C1 < 1
Hv = 0,C0 = 0

Case 2: coincidence of the 
simulated burnt area with 
observation

Hv = 0,C0 = 0
Hv = 1,C1 = 1

Φ > 0,Hv = 1

Φ < 0,Hv = 0

Φ > 0,Hv = 1

Φ < 0,Hv = 0
Case 3: partial overlap 
between simulated burnt 
area and observation
Hv = 1, 0 < C1 < 1
Hv = 0, 0 < C0 < 1
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Introduction

(1) Data assimilation algorithm 
• Ensemble-based Kalman filtering 
• Link with uncertainty quantification methods 

(2) Position errors  
• Amplitude errors versus Position errors 
• New measure to quantity front shape similarity 

(3) Object-oriented data assimilation 
• Data assimilation with front shape similarity measure 
• Joint state-parameter estimation

Talk’s outline

The wildfire problem as 
guideline



State estimation problem
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Formulate the analysis using the front shape similarity measure

analysis

observation forecast

LUENBERGER OBSERVER 
Analytic derivation of the state estimator 
• Feedback term added in the model equation 
• Involving the gradient of the Chan-Vese data fitting functional

Estimation of the progress variable c

Dirac δ function localizing the data assimilation feedback on the simulated front

��c
�t + V · ��c = �λ δ(φ)

�
[yo � C1(y

o,φ)]
2 � [yo � C0(y

o,φ)]
2
�

FRONT-TRACKING PROBLEM 
Progress variable c = c(x,y,t) 
• Front marker → contour line cfr 

• Level set function → 
• Propagation equation

�c
�t + V · �c = 0

φ = c� cfr

observation

analysis


delta function




Parameter estimation problem
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Adaptation of Kalman filtering to the front shape similarity measure

analysis

observation forecast

ENSEMBLE-BASED KALMAN FILTER 
Introduction of a discrepancy operator D 
• Based on the gradient of the Chan-Vese data fitting functional 
• Analysis still formulated as a correction of the forecast

FRONT-TRACKING PROBLEM 
Progress variable c = c(x,y,t) 
• Front marker → contour line cfr 

• Level set function → 
• Propagation equation

�c
�t + V · �c = 0

φ = c� cfr

Estimation of the physical parameters that are inputs to the velocity V

Discrepancy operator that represents front shape discrepancies and that can assimilate image data directly

xa
n+1 = xb

n+1 + Kn+1
�
D

�
yo
n+1,G(xb

n+1
��



Verification test
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Parameter estimation with wrong wind (intensity, direction)
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Rochoux et al. (2017), 
ESAIM: Proceedings and 
Surveys

Collin et al. (2015), Journal 
of Computational Physics



Verification test
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Joint state-parameter estimation with wrong wind and initial condition
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Rochoux et al. (2017), 
ESAIM: Proceedings and 
Surveys
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Collin et al. (2015), Journal 
of Computational Physics
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• More physical parameter values 
• Able to using an additional 

topological gradient in the state 
estimator 
➡ More complex front topology

mean+STD

mean

mean-STD



Validation test
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3-hectare RxCADRE controlled burn experiment 
• Algorithm: Luenberger observer for state estimation 
• Control variables: Progress variable c 
• Metric: Front shape similarity measure 
• Fire: 8-min fire propagation over mix of grass and shrub

Zhang et al. 
(submitted), 
Proceedings of the 
Combustion 
Institute



Validation test
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70 km x 50 km RIM grass/forest wildfire (California, 2013)
• Algorithm: Luenberger observer for state estimation 
• Control variables: Front marker positions (Lagrangian model) 
• Metric: Front shape similarity measure 
• Fire: 11 observations, August 20-25, started from illegal campfire

© NASA

© NASA

© Justin 
Sullivan

Case of strong 
confidence in the 

observation 

Crown fire



Validation test
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70 km x 50 km RIM grass/forest wildfire (California, 2013)
• Algorithm: Luenberger observer for state estimation 
• Control variables: Front marker positions (Lagrangian model) 
• Metric: Front shape similarity measure 
• Fire: 11 observations, August 20-25, started from illegal campfire

© NASA

Model computational cost 
• spatial resolution ~70 m

• Time step ~60 s

• Simulation time ~100 hr 

⬌ CPU time ~20 min

FREE RUN  
without 
data 
assimilation

ASSIMILATION at 
obs1, FORECAST 
at obs2 and obs 3

Observations 
• obs1: Aug 20, 11:30

• obs2: Aug 21, 23:50

• obs3: Aug 22, 21:00
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Conclusions

➡ Data assimilation: Find more optimal values of the 
estimation targets by minimizing the misfit error with 
respect to the observations   

• Ensemble-based Kalman filtering for parameter estimation 
• Deterministic Luenberger observer for state estimation

New front shape similarity measure for data-driven 
front-tracking modeling

The wildfire problem as 
guideline

Rochoux et al. (2017), 
ESAIM: Proceedings and 
Surveys

Zhang et al. (submitted), 
Proceedings of the 
Combustion Institute

➡ Design of an adapted misfit error measure for 
front-tracking problem  

• Position and shape errors, not only amplitude errors 
• United framework for Eulerian and Lagrangian models

➡ Application to wildland fires  
• Observation simulation system experiments 
• RxCADRE experiments, RIM wildfire



© P. Crombette

Thank you for your attention.

Any question?

© S. Palley « Terra flamma »

Contact

Melanie.Rochoux@cerfacs.fr



