HIGH-ENERGY ELECTRODYNAMIC PROCESSES WITH "HALF-BARE" ELECTRONS

S.V. Trofymenko

NSC "Kharkov Institute of Physics and Technology", Karazin Kharkov National University

Kharkov, Ukraine

1

COHERENCE (FORMATION) LENGTH. 'HALF-BARE' ELECTRON

 γ – Lorentz-factor ω – radiated frequency

$$\mathbf{E}(\mathbf{r},t) = \int_{-\infty}^{+\infty} d\omega \int d^3k \, \mathbf{E}(\mathbf{k},\omega) e^{i(\mathbf{kr}-\omega t)}$$
plane wave
(virtual photon)

the frequency ω appears on distance $l_C \sim \gamma^2 / \omega$

from the interaction area

within coherence length part of Fourier-components is absent in the field around the particle – the particle is 'half-bare' *E.L. Feinberg // Sov.Phys.JETP, 1966*²

COHERENCE LENGTH. QUANTUM POINT OF VIEW *M.L. Ter-Mikaelyan // JETP, 1953*

«CLASSICAL» FORMATION LENGTH

MANIFESTATION OF 'HALF-BARE' STATE IN BRAMSSTRAHLUNG

1) Coherent bremsstrahlung

M.L. Ter-Mikaelyan // JETP, 1953 H. Überall // Phys.Rev., 1956

2) Landau-Pomeranchuk-Migdal effect (suppression of Bethe-Heitler spectrum al low frequencies) Observed in SLAC (1993)

3) Ternovsky-Shul'ga-Fomin effect

(bremsstrahlung suppression in thin layers of substance)

Observed in CERN NA63 experiment:

H.D. Thomsen, K.K. Andersen, J. Esberg, H. Knudsen, M. Lund, K.R. Hansen, U.I. Uggerhøj et. al. // Phys.Lett.B, 2009

U. Uggerhøj : '... we have seen the 'half-bare' electron !'

IN THE PRESENT TALK

Investigation of the influence of half-bare state of electron upon its:

- 1) Transition radiation
- 2) Ionization energy loss
- 3) X-ray emission in crystal

Scalar potential of the total field for t > 0: $\theta(x > 0) = 1$ $\theta(x < 0) = 0$

$$\varphi(\vec{r},t) = \theta(r-ct)\varphi_{v}(\vec{r},t) + \theta(ct-r)\varphi_{v'}(\vec{r},t)$$

E.L. Feinberg // Sov. Phys. Usp, 1980 A.I Akhiezer, N.F Shul'ga, "High Energy Electrodynamics in Matter", 1996

TRANSITION RADIATION BY HALF-BARE ELECTRON

TRANSITION RADIATION BY 'HALF-BARE' ELECTRON

Extracted beams may be an example of 'half-bare' particle beams

For 10 GeV electrons even in optical region $l_C \sim \gamma^2 / \omega \sim 200 m$

(in millimeter region $l_c \sim 400 \, km$!)

ANALOGOUS FIELD STRUCTURE IN TRANSITION RADIATION AND BREMSSTRAHLUNG PROCESSES

EXPERIMENT ON HALF-BARE ELECTRON TR INVESTIGATION BEING PREPARED AT CLIO

S. Trofymenko, N. Shul'ga, N. Delerue, S. Jenzer, V. Khodnevych, A. Migayron // J. Phys. (2017)

EXPECTED SIGNAL AT CLIO (single bunch of 10⁹ electrons)

spectrum for "dressed" electron:

12.5 MeV bunch in the range 0.048 cm < λ < 0.054 cm:

FERMI AND BETHE-BLOCH FORMULAE

We consider restricted ionization loss with momentum transfer less than q_0 (the collisions with impact parameters $\rho>b\sim 1/\,q_0$)

Bethe-Bloch formula ($\gamma \leq I / \omega_p$):

Fermi formula ($\gamma > I / \omega_p$):

 γ – electron Lorentz-factor

I – mean ionization potential

$$\omega_p$$
– plasma frequency

THIN LAYER OF SUBSTANCE

Bethe-Bloch and Fermi formulae are valid in boundless homogeneous substance

Garibian G.M.// JETP, 1959 Sørensen A. // Phys.Rev.A, 1987

Total absence of the density effect in thin plates:

 $L \le I / \omega_p^2$

Particle energy loss:

$$\Delta E = \frac{\omega_p^2 e^2}{v^2} a \ln \frac{\gamma}{bI} \quad \text{for} \quad 1 \le \gamma < \infty$$

FIRST EXPERIMENT (Kharkov, 1963)

A.I. Alikhanian, G.M. Garibian, M.P. Lorikian, A.K. Walter, I.A. Grishaiev, V.A. Petrenko, G.L. Fursov // JETP, 1963

Electron energy losses in thin films of polystyrene of thicknesses $10^{-6}cm$ (a) and $2 \times 10^{-3}cm$ (b) 1 – theoretical curve without density effect 2 – theoretical curve with density effect circles show the measurement results

TRANSFORMATION OF ELECTRON'S FIELD AND IONIZATION LOSS VALUE UPON ENTRANCE INTO THE SUBSTANCE

Ionization loss transformation

 $L \sim I / \omega_p^2 \sim \text{absorption length}$

I – mean ionization potential

TRANSFORMATION OF ELECTRON'S FIELD AND IONIZATION LOSS VALUE UPON ENTRANCE INTO THE SUBSTANCE

EVOLUTION OF THE FIELD AROUND THE ELECTRON IN VACUUM

EVOLUTION OF THE FIELD AROUND THE ELECTRON IN VACUUM

IONIZATION ENERGY LOSS OF 'HALF-BARE' ELECTRON (from Fermi to Bethe-Bloch formula)

N.F. Shul'ga, S.V. Trofymenko // Phys. Lett. A (2012)

CERN NA63 EXPERIMENT (2010)

K.K. Andersen, J. Esberg, K.R. Hansen, H. Knudsen, M. Lund, H.D. Thomsen, U.I. Uggerhøj et. al. // NIM B, 2010

CHUDAKOV EFFECT (ionization loss in boundless medium)

 γ – Lorenz-factor of each particle

 ω_p – plasma frequency of substance $_{22}$

CHUDAKOV EFFECT (ionization loss in boundless medium)

Dependence of pair ionization loss on distance from its creation point:

For $z < \gamma/\omega_p$ strong suppression of dE/dz

Theory

- Berestetskii V.B., Geshkenbain B.V. // JETP, 1956
 Yekutieli G. // Nuovo Cim., 1957
 Mito I., Ezawa H. // Progr. Theor. Phys., 1957
- Burkhardt G.H. // Nuovo Cim., 1958

Experiment

- Perkins D. // Phil.Mag., 1955
- Wolter W., Miesowich M. // Nuovo Cim.,1956
- Iwadare J. // Phil.Mag., 1958
- (cosmic ray photons)

CERN (SPS) NA63 EXPERIMENT

T. Virkus, H.D. Thomsen, E. Uggerhøj et al. // Phys. Rev. Lett., 2008H. D. Thomsen, U. I. Uggerhøj // Nucl. Instrum. Meth. B., 2011

The ratio of pair ionization losses in two plates $\sigma = \Delta \mathcal{E}_1 / \Delta \mathcal{E}_2$ as a function of the pair energy \mathcal{E} was measured in the range $1 GeV < \mathcal{E} < 100 GeV$

For $L_{int} > z_1$ and $L_{int} > z_2 \longrightarrow \sigma < 1$ For $L_{int} << z_1$ and $L_{int} << z_2 \longrightarrow \sigma = 1$

CERN (SPS) NA63 EXPERIMENT

T. Virkus, H.D. Thomsen, E. Uggerhøj et al. // Phys. Rev. Lett., 2008 H. D. Thomsen, U. I. Uggerhøj // Nucl. Instrum. Meth. B., 2011

 $\Delta \mathcal{E}_1 / \Delta \mathcal{E}_2$ as a function of the pair energy \mathcal{E}

Ref.[14]: V.B. Berestetskii, B.V. Geshkenbain // JETP, 1956 Ref.[15]: P. Sigmund // Particle Penetration and Radiation Effects, 2006 Ref.[24]: G.H. Burkhardt // Nuovo Cim., 1958

PROBLEM STATEMENT

plate thickness $a \leq I / \eta_p^2$

- $\eta_{\scriptscriptstyle p} {\rm plasma}$ frequency of the plate
- I mean ionization potential

 $l_{form} \sim \gamma^2 / I$

PAIR IONIZATION LOSS IN THE PLATE (the plate is situated on distance z₁ from the substance) *S.V. Trofymenko, N.F. Shul'ga // Phys. Lett. A (2013)*

PAIR IONIZATION LOSS IN THE PLATE (the plate is situated on distance z_1 from the substance)

S.V. Trofymenko, N.F. Shul'ga // Phys. Lett. A (2013)

Interference effects are manifested on distances $z_1 \sim \gamma^2/I$, which significantly exceed the corresponding distances $z_1 \sim \gamma/\omega_p$ in the case of pair motion in boundless medium

RATIO OF PAIR IONIZATION LOSSES IN TWO TARGETS (as function of pair energy)

total ionization loss

 $I \sim 100 eV$ (mean ionization potential)

Loss due to excitation of inner atomic shells

 $I_{in} \sim 2000 \, eV$ (inner shells ionization potential)

ANOMALOUS ASYMPTOTICAL BEHAVIOR OF PAIR IONIZATION LOSS

S.V. Trofymenko, N.F. Shul'ga // Nucl. Instrum. Meth. B (2017)

dependence of pair ionization loss on distance between the substance and the plate

 ψ – pair divergence angle

dependence of relative value of ionization loss asymptotic suppression on the energy of the pair

"ANTI-CHUDAKOV" EFFECT

Existence of region on distance $z \sim \gamma / \omega_p$ from the creation point where electron's and positron's fields interfere constructively

It is natural to expect increase of ionization loss at $z \sim \gamma / \omega_p$

"ANTI-CHUDAKOV" EFFECT IN BOUNDLESS MEDIUM

"ANTI-CHUDAKOV" EFFECT IN THIN TARGETS

N.F. Shul'ga, S.V. Trofymenko // Phys. Lett. A (2014) S.V. Trofymenko // Probl. Atom. Sci. Tech. (2017)

Dependence of $d\mathcal{E}/dz$ on z_1 for $\mathcal{E} = 100 MeV (\gamma^2/I \sim 11 \mu m)$:

CONCLUSIONS

Influence of large formation lengths and "half-bare" state of electron on its transition radiation, ionization loss and X-ray emission in thin crystals:

>Modification of transition radiation spectral-angular characteristics

>Difference of ionization loss value in thin target from the result predicted by Bethe-Bloch formula within macroscopically large distances

>Manifestation of the effect of e^+e^- pairs ionization loss suppression in thin targets on much larger distances than in the case of "classical" Chudakov effect in boundless medium

>Anomalous asymptotical behavior of pair ionization loss in thin targets

>Existence of the effect opposite to the one of Chudakov