The High Energy Physics Tracking Machine Learning challenge

<u>David Rousseau</u> (LAL) (<u>rousseau@lal.in2p3.fr</u>), Cécile Germain (LAL/LRI) , Isabelle Guyon (Chalearn/LRI)

with Paolo Calafiura, Steven Farrell, Heather Gray (LBNL-Berkeley), Jean-Roch Vlimant (CalTech), Vincenzo Innocente, Andreas Salzburger (CERN), Tobias Golling, Moritz Kiehn, Sabrina Amrouche (U Geneva), Vava Gligorov (LPNHE-Paris), Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex)...

LHC purpose in a nutshell

Collision de protons

 $E=mc^2$

Conversion de l'énergie cinétique en masse.

Création de nouvelles particules, d'une centaine de sortes

La plupart se désintègrent immédiatement ⇒Il n'en reste que de ~6 sortes, qui vont traverser le détecteur.

Bunch collision

Situation actuelle : 20aine de collision parasites

HL-LHC: facteur 10

de Higgs qui résout une énigme fondamentale

U.S. Edition V

The New Hork Times

Wednesday, July 4, 2012 Last Update: 4:00 AM ET

IGITAL SUBSCRIPTION: 4 WEEKS FOR

Les derniers feux des pharaons

Paris, one exposition ério de tandivo de l'appicant

Suicides chez France Télécom: l'ancien patron mis en examen

A nos lecteurs

New Particle Could Be Physics' Holy Grail

2013 NOBEL PRIZE IN PHYSICS

François Englert Peter W. Higgs

David Rousseau, TrackML, CDS pitching day 201

The Nobel Foundation, Photo: Lovisa Engblom

the refor

OPINIO

EDITORIA

Too Ou

Health

The Oba

forcefull

Republic

MARKE Britain

FTSE 10 5,673.04

-0.269

GET QUO

Future of LHC beyond Higgs boson discovery

L'Univers est-il stable ?

La stabilité du vide dépend des masses du boson de Higgs et du quark top

Notre Univers vit au bord du pre

"Physique des deux infinis

How?

→ HL-LHC, increase LHC Luminosity by 10 in 2025

IN2P3

Tracking challenge

Motivation 1

- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- HighLumi-LHC perspective : increased rate of parasitic collisions
 - o Run 1 (2010-2012): <>~20
 - o Run 2 (2015-2018): <>~30
 - o Phase 2 (2025): <>~150
- CPU time of current software quadratic/exponential extrapolation (difficult to quote any number)
- (but current software give reasonably good results, but too slow)

David Rousseau,

Motivation 2

- LHC experiments future computing budget flat (at best) (LHC experiments use 300.000 CPU cores worldwide)
- Installed CPU power per \$==€==CHF expected increase factor <10 in 2025
- \square Experiments plan on increase of amount of data recorded (by a factor ~ 10)
- → HighLumi reconstruction to be as fast as current reconstruction despite factor 10 in complexity
- → requires very significant software CPU improvement, factor ~10.
- Large effort within HEP to optimise software and tackle micro and macro parallelism, likely not enough
- >20 years of LHC tracking development. Everything has been tried!
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed?
 - Maybe no, brand new ideas from ML (i.e. Convolutional NN)
- Need to engage a wide community to tackle this problem

Curent Algorithm

- Pattern: connect 3D points into tracks
- Essentially combinatorial approach
- ☐ Tracks are (not perfect) helices pointing (approximately) to the origin
- Challenge : explore completely new approaches
- (not part of the challenge : given the points, estimate the track parameters)

Pattern recognition

□ Pattern recognition, tracking, is a very old, very hot topic in Artificial Intelligence : examples →

- Note that these are real-time applications, with CPU constraints
- Worry about efficiency, "track swap",...
- But no on-the-shelf algorithm will solve our problem David Rousseau, TrackM

TrackMLRamp

- A simplified tracking challenge setup on RAMP with CDS help (Yetkin Yilmaz Balazs' post-doc 3months, setting up and submission analysis)
- A (non completely trivial) 2D simulation with 10 tracks instead of 3D/10.000 tracks
- □ Run as a 40 hours hackathon during CTDWIT 6-9th March 2017 LAL-Orsay
- Allowed to validate robustness a scoring variable and show richness of possible algorithms: combinatorial (HEP baseline), conformal mapping, MCTS, LSTM
- Published in proceedings <u>EPJ Web Conf.</u>, <u>150 (2017) 00015</u>

TrackML: current thinking

- We now have a dataset (sorry it took so long)
 - Use ACTS (A Common Tracking Software) to generate fast simulation of a generic Silicon detector at HL-LHC (cylinder and disks)
 - battlefield tested ATLAS software moved to public <u>gitlab@cern</u>
 - o → simplified simulation but not too simple (otherwise a simple Hough transform would probably work)
 - o "cheap" but realistic events which do not "belong" to any collaboration (ATLAS, CMS,...)
- Dataset:
 - o 3D points and truth track parameters for n events
 - Typical events with ~200 parasitic collisions (~10.000 tracks/event)
 - Large training sample 1 million events, 100 billion tracks ~1TeraByte
 - Also thinking of allowing participants to generate their dataset
- Participants are given the test sample. They should upload the tracks they have found
 - A track is a list of points belonging to it
 - We don't ask for track parameters, nothing will beat Kalman filter
 - Figure of merit built from efficiency, fake rate, CPU time
- We have decided to run in two phases
 - Phase 1: focus only on accuracy, no CPU incentive
 - Discussing with Kaggle next week
 - To run in Winter 2018
 - Phase 2 : focus on CPU, preserving accuracy
 - More tricky, require the challenge platform to run the algorithm within controlled environment
 - To run in Summer 2018

What with CDS?

- ☐ We're not looking really for new collaboration on preparing the challenge itself but still:
 - 3-months of an engineer (preferably from CDS core) to finalise the challenge operation, especially phase 2
 - ...tricky, need to run submitted software in a controlled environment, and to handle many submissions
- Put more emphasis on post challenge analysis and mid/long term collaboration
 - use the CDS channels to advertise the challenge
 - master internship for post-challenge analysis
 - Build in/post-challenge collaboration with CDS scientists on innovative approaches to the tracking problem as revealed by the challenge.
 - o possibly collaboration on the visualization (Tobias Isenberg INRIA/Saclay expressed interest, thanks to pitching day 2016)

