

The Cherenkov Detector for Proton Flux Measurement (CpFM) in the UA9 Experiment

Status & new developments for double-beam splitting

5th French-Ukrainian Workshop on Instrumentation, LAL Orsay – France, November 6, 2017

L. Burmistrov¹, D. Breton¹, <u>S. Dubos</u>¹, J. Maalmi¹, V. Puill¹, V. Chaumat¹, A. Stocchi¹, W. Scandale^{1,3}, F. Addesa², G. Cavoto², F. Iacoangeli², M. Garattini³, S. Montesano³, A. Natochii⁴, T. Povar⁴, V. Yeroshenko⁴

¹ Laboratoire de l'Accélérateur Linéaire – CNRS/IN2P3, Orsay, France
² INFN – Sezione di Roma I, Rome, Italy
³ CERN, Geneva, Switzerland
⁴ Taras Shevchenko National University of Kyiv, Kiev, Ukraine

R&D for the upgrade of the LHC collimation system

Crystals collimation which aims are to **improve the cleaning and reduce the impedance** is one of the R&D projects approved for the LHC collimation

(a) Collimation scheme using a solid state primary collimator scatterer (SC).

(b) Collimation scheme with a bent crystal (BC) as a primary collimator. Halo particles are deflected and directed onto the absorber far from its edge

The UA9 experiment

Investigate bent crystals as primary collimators in hadron colliders

Bent crystals work as a "smart deflectors" on primary halo particles

If crystalline planes are correctly oriented, particles are subjected to a coherent interaction (channeling):

- \checkmark large angle deflection also at high energy
- ✓ reduced interaction probability (e.g. diffractive events, ion fragmentation/dissociation)
- ✓ reduced impedance (less secondary collimators, larger gaps)
- X small angular acceptance
- X concentration of the losses on a single absorber

The UA9 Collaboration is investigating how to use bent crystals as primary collimators/deflectors:

- operational and machine protection concerns are considered in cooperation with the Collimation Team
- 3 installations (since 2014): SPS North Area (H8), SPS, LHC

The CpFM

- <u>Cherenkov detector for proton Flux Measurement</u>
- Main contribution of LAL to UA9 Experiment
- Aim of the CpFM: count the number of deflected protons with a precision of about 5% in the LHC environment (mean value over several bunches, with expected values between 1 and 200 p/bunch)

In vacuum, radiation hard detector:

- interception of the channeled beam by a quartz radiator (retractable finger)
- emission of Cherenkov light readout by a PMT placed 1 m from the beam pipe (light brought by silica fibers)
- PMT amplified signal readout by the WaveCatcher module (3,2 GHz digitizer)
- 2 channels (one to measure the background)

PMTs socket and housing

CpFM Beam-tests at BTF and H8

e

I Quartz bars

bundle

Quartz plate

Quartz window decreases the signal by a factor 2

0.62 p.e. per incoming electron for the final configuration :
I bar + window + 4 m fibers bundle + PMT + 30 m cable + WaveCatcher

CpFM installation on SPS

The CpFM was successfully installed on the SPS, 58 m downstream the crystal

CpFM in operation

Fit of the amplitude distribution in the channeling region with an error function \rightarrow its derivative corresponds to the Gaussian profile of the channeled beam.

 $\rightarrow \sigma \rightarrow$ angular spread of the channeled beam: 12.8 µrad, in good agreement with the critical angle for 270 GeV proton (12,2 µrad)

Time (s)

CpFM in operation

Angular scan: counting of the deflected proton when changing the angular orientation of the crystal (from 1800 to 900 μ rad)

Channeling angle found at 1432 μrad

 \rightarrow good agreement bewteen the CpFM and the scintillator BLM

CpFM in operation

Uncertainties about the number of deflected protons!

-> We should have the same number of deflected protons measured in the channeled beam!

In situ calibration

CpFM_{1 750 V} = 271 mV CpFM_{2 750 V} = 995 mV

Pb ions generates 6724 times more Cherenkov light than protons (Z²)

Corrected number of deflected protons as a function of the position

(-Amplitude[2]/0.016)/0.18:tqcd_51991_controllers_interpol_aka_CpFM1_in {-Amplitude[2] > 0.006}

CAC Research of the dysfunction causes of the CpFM

Tests of the quartz (TS Feb 2017)

Measurements performed with a β source shows that the **polishing quality of both quartz bars is not as good as expected and not the same**

 \rightarrow factor 1.5 between them

UA9 evolution for double crystal experiment

- ◆ Measurement of the magnetic moment of the charmed charged hadrons starting from ∧c
- To be installed in LHC, but tested in SPS (evolution of UA9 -> double crystal experiment)

UA9: double crystal experiment - layout

- Schematic view of double crystal experiment:
 - · deflect protons from LHC beam halo and send it to an internal target
 - · bend particles produced in a target and send them into an experiment
- · Setups under consideration:
 - · Test the experimental scenario at the SPS
 - Export it into LHC in an existing detector for parasitic mode FT operation

From Walter's presentation

CpFM – Feedback & new specifications

300

- We could use direct coupling (PMT just disposed behind the viewport), no bundle \checkmark
- "Simple" geometry for quartz radiators used (and low thickness) -> light production could be optimized with more complex geometries and better polishing quality. We need to have enough light to see a single proton for a range of 1-100 protons/bunch (detection threshold should be minimized)
- In old CpFM, one bunch every 23us (43 kHz), measure of 1/1000 by the WC (43 Hz) -> we loose the "history" of the extraction
- ✓ For the new CpFM: minimum 1 bunch every 23 us (measure at 43 kHz), maximum of 4 trains of 72 bunches (each spaced by 25 ns) every 23 us -> We should work at 40 MHz to measure each bunch
- -> Development of a new electronics with charge extracted at 40 MHz with no dead-time (started at LAL – work in progress)
- -> New crystals with improved quality & geometries for the Cherenkov radiator

Andrii Natochii (LAL)

- ✓ Simulation of different quartz geometries (various thicknesses, 47° degrees cut or not, "I" or "pyramid" shape)
- ✓ Actual geometry: configuration #0 or #1 (length of 400 mm, kept for this simulation)
- ✓ With GEANT4: response to a flux of incoming protons impinging the extremity of the bars (close to the circulating beam)

Andrii Natochii (LAL)

- Simulation of different quartz geometries (various thicknesses, 47° degrees cut or not, "I" or "pyramid" shape) \checkmark
- Actual geometry: configuration #0 or #1 (length of 400 mm, kept for this simulation)
- With GEANT4: response to a flux of incoming protons impinging the extremity of the bars (close to the circulating beam)

- -> For each proton, tracking of all Cherenkov photons generated.
- -> Transportation (reflections, absorption, diffraction) & detection (or not) by a photodetector

- ✓ Distribution of the number of photons hitting the detection surface:
- … between 443 and 461 photons / proton
- Nb. of reflections?

Andrii Natochii (LAL

GeomID 5

GeomID 0

GeomID 1 GeomID 2 GeomID 3 GeomID 4

✓ Distribution of the number of reflections for each Cherenkov photon:

Andrii Natochii (LAL

 \checkmark Example of critical angle effect: L_i = 2.0 cm & θ_b = 0.75° or 2° -> refracted ray escaping from the detector volume

- \checkmark Conclusions for the design of a new detector:
 - Geometry #0: installed
 - Geometry #2: more Cherenkov photons generated (compared to #1) and less reflections (compared to #0), adapted to the using of a fibers bundle
 - Geometry #4: high number of Cherenkov photons produced, low number of reflections, photons focussed on a "small" surface (2.4 * 2.4 cm²). Also, suitable for direct coupling.

✓ For the new CpFM, we decided to order:

- One "pyramid"-shape bar (geometry #4), to be used without bundle (direct coupling)
- One "I"-shape bar of 10*10 mm² (geometry #2), as a backup or an update for the "old" CpFM
- One additional "banana"-shape bar (nose of 3 cm, thickness of 0.5 cm), as a backup or an update for the "old" CpFM

✓ For the new CpFM, we decided to order:

- One "pyramid"-shape bar (geometry #4), to be used without bundle (direct coupling)
- One "I"-shape bar of 10*10 mm² (geometry #2), as a backup or an update for the "old" CpFM
- One additional "banana"-shape bar (nose of 3 cm, thickness of 0.5 cm), as a backup or an update for the "old" CpFM

Test setup for H8 beam-tests

✓ Mechanical pieces fabricated (holder, boards) or made with the LAL 3D printer (PMT holder, scintillator package)

Test setup for H8 beam-tests

✓ Not only characterization of quartz... But also complete calibration in the final configuration!

Preliminary results & conclusion

- ✓ HUGE signal observed for all configurations:
 - > <u>900 mV / particle</u> (HT 1050V, maximum gain) for pyramid bar
 - > 125 mV / particle for "I" bar
 - 300 mV / particle for "banana" bar
 - Reminder: before, from 1 to 4 mV / incoming particle at same PMT gain!
- ✓ Only 10% of light lost with the new setup (holder + flange) for the pyramid bar (before: 50%)
- ✓ Perfectly suitable for the new CpFM (low threshold and 1-100 particles range)
- ✓ Almost ready to be installed in SPS (waiting for a new tank from CERN and the new electronics from LAL)
- ✓ Now: We'll take profit from this R&D to update the "old" CpFM with this new setup (-> To be done during the next winter technical stop)