# **ARICH detector (within BELLE 2 experiment)**

#### **Leonid Burmistrov**

LAL, CNRS/IN2P3, Orsay, France





#### **BELLE2** detector



ARICH detector located in forward endcap (PID)

Target performance : K/pi separation at  $> 4\sigma$  C.L. @ 0.5 < p < 4 GeV/c.

#### **ARICH**

#### Detailed description of the detector:

https://confluence.desy.de/pages/viewpage.action?spaceKey=BI&title=ARICH+NutShell

Need to have DDESY Belle2 account

- Proximity-Focusing Ring Imaging Cherenkov counter using Aerogel
- → Particle mass is identified according to emission angle in aerogel radiator

Particle momentum 
$$-m = \frac{p}{c} \sqrt{n^2 \cos^2 \theta_c - 1} \qquad \text{Particle Cherenkov angle}$$
 Aerogel refractive index momentum



# Silica Aerogel radiator

- As a radiator a silica aerogel is used. Aerogel is an amorphous, highly porous solid of fused silica (silicon dioxide SiO<sub>2</sub>). Refractive index can be adjusted.
- The size of the porous is smaller than 0.1 um this explain the bluish color due to Rayleigh scattering.
- For ARICH use two different Refractive indexes  $n_1 = 1.045$  and  $n_2 = 1.055$  for focusing purpose.
- Thickness of one layer is 20 mm (40 mm) in total.
- → Light transmission length is 45 mm for first layer and 35 mm for second one.







# **Silica Aerogel radiator**







## **Double layer configuration of ARICH**

One of the contribution to the width of Cherenkov ring is thickness of the radiator. Use of thinner layer with different n can mitigate this effect. There are two possible double layer configuration.





### **Overall ARICH detector**

Placed 2 m from I.P.

 $r_{in} = 56 \text{ cm}, r_{out} = 114$ 

**9.19** m<sup>2</sup> coverage surface

6 sectors

 $2 \times 124 = 248$  aerogel tiles

420 HAPD modules with

60480 redout channels

18 planar mirror plates

#### Aerogel plane sextants









Polyethylene shields



#### **PMT**

- → Hybrid Avalanche Photo Detector (HAPD). Co-developed with Hamamatsu.
- → 144 pixelated APDs : 5 x 5 mm² position resolution. Effective area : 63 mm×63 mm in 73 mm x 73 mm.
- Signal gain >  $4x10^4$  by Hybrid amplification process.
- → Gamma / neutron tolerance for 10 years operation of Belle II.
- → Operation in 1.5 T magnetic field.
- → This detector have very poor time resolution (~ 100 ns) but this is not important for ring reconstruction.







# **PMT (2)**





#### Beam tests.

- Performance of the designed ARICH has been tested on beam tests.
- Small prototype with focusing configuration and 6 HAPD modules arranged as in a part of actual detector layout
- → KEK in 2009 (3 GeV electron beam).
- → CERN in 2011 (120 GeV hadron beam).
- → DESY in 2013 (4-5 GeV/c electron).
- → Single photon angle resolution is measured to be 13 mrad.
- On average 9 photons per track are detected.

#### Beam test at DESY in 2013 (4-5 GeV/c electron).





10

#### **RICH reconstruction. PID.**

- "Simple" ring fit and Cherenkov angle reconstruction provide PID information but less precise then logarithm likelihood analysis.
- PID with ARICH detector based on logarithm likelihood analysis.

$$lnL = -N + \sum_{\text{hit } i} n_i + ln \left(1 - e^{-n_i}\right)$$

Expected number of detected photons

Number of detected photons

Detection efficiency

Probabilities for a HAPD pad to be hit.

Hit probability 
$$n_i = n_s^i + n_b^i$$
 Signal Background

 $n_{s,r}^i = \varepsilon_i n_{t,r} \int_{\Omega_i} S_r(\theta_r, \phi_r) d\theta_r d\phi_r$ 

Radiator Total number of photons emitted in the radiator of type r

Is the probability for a Cherenkov photon being emitted by particle.









# **BASF2 – ARICH - Event Display**

Aerogel radiator. HAPD (photon detector plane). Belle II Event Display Browser Eve Camera Scene Tab 1 🐹 Eve Event Control Delay (s): 3.5 -**Geometry display** Event: Experiment: <2017-05-12 12:53:49> Options Show full geometry Show MC info Assign hits to primary particles Show all charged particles Show all neutral particles ☐ Hide secondaries Show candidates and rec. hits Show tracks, vertices, gammas - Current Viewer Save As... Save As (High-Res)... Dock/Undock Viewer -100 100 200 300 -400 -300 -200 Visualisation Options Hit display Dark/light colors 150 150 Cumulative mode (experimental) Automatic Saving (experimental) 100 100 Prefix: display **Zoom** Width (px): 800 - Save PNGs 50 50 -50 100 200 400 Exit Cherenkov ring on HAPD plane.

# Cosmic muon test.



#### **Conclusions**

→ LAL have joined BELLE2 experiment.

→ ARICH activity have recently started within BELLE2 experiment.

- ARICH have been installed in the beginning of September installed.
- Cable installation from ARICH to electronics hut is almost finished.
- Simulation improvements and alignment algorithms need to be developed.

14