

TIMEPIX detector tests within Λ_{c^+} experiment

A.Natochii, L.Burmistrov

The main idea and goal of the experiment

The proposal is to use the bended crystals for measuring the magnetic moment of the charmed charged hadrons starting from Λc^+ ($ct(\Lambda c^+) \sim 60$ um).

<u>Timepix:</u>

Chip: 256x256 pixels
 Pixel: 55x55 um
 1-96 MHz Clock (1-0.0104 us)
 <u>Frame mode:</u>
Medipix → count the number of hits in
 the pixel (11810 max. counts)
ToA → count the number of clocks after
 signal arrived (11810 max. counts)
ToT → count the number of signal
 duration clocks (11810 max. counts)

Maximum time acq. window: 11.810 ms 20 Hz data taking (windows soft) 50 Hz (Linux soft) USB2.0 (limited)

<u>Timepix3:</u>

Chip: 180x180 pixels Pixel: 55x55 um 40 MHz Clock *(0.025 us)*

+

640 MHz for Fast ToA (0.0015625 us) Frame or Pixels mode:

- **ToA+ToT** → count the number of clocks after signal arrived and its duration (ToA 16384 max. count & ToT 1024 max. count)
- ToA → count the number of clocks after signal arrived (16384 max. count)

Event count & Integral ToT → count the integrated number of all signals duration and number of hits (iToT 16384 max. count & eCount 1024 max. count)

Maximum time acq. window: 0.409 ms 20 Hz data taking (windows soft) 50 Hz (Linux soft) USB2.0 (limited)

Readout: USB2.0 via Fitpix

DAQ Software

H8 run. Pion beam. May 2017 (TIMEPIX)

Improvement of the Cluster Analysis

Timepix linearity in ToA mode with new Cluster Analysis

Improvement of the Readout electronics for Timepix3

BurdaMan - new GUI

Katherine: Ethernet Embedded Readout Interface for Timepix3 P. Burian ^{a,b}, P. Broulim ^a, V. Georgiev ^a, M. Jara ^a and B. Bergmann ^b

^a Faculty of Electrical Engineering, University of West Bohemia, Univeritni 26, Pilsen, Czech Republic ^b Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, Prague, Czech Republic

Features:

- → Embedded computer + interface for one Timepix3 (CERN chipboard)
- \rightarrow Optimized for long distance between sensor and readout
- \rightarrow Source of high voltage for bias both polarities (±300V)
- → Gigabit Ethernet Interface => max. 15Mhits/s
- \rightarrow Long-distance access (up to 100m)
- \rightarrow Dimension: roughly 100x80x28
- \rightarrow Power supply DC 5V
- \rightarrow ToA overflow in data-driven mode:
 - >> Coarse ToA counter overflow period = 409.6µs
 - >> The device adds 32 extra bits for time-stamping
 - >> Overall 50-bit (32 extra, 14 ToA, 4 fToa) time-stamping => overflow period is ~20 days
- \rightarrow Enough computing power for user purpose:
 - >> Approximately 8000 ALMs in FPGA free to use
 - >> Dual-core ARM Cortex-A9 processor
 - >> 1GB DDR3 RAM

Timepix3 Test at H8

Timepix3 & Katherine. Time distribution of the particles at H8

Timepix & CpFM (COBRA electronics). August 2017

Timepix & CpFM. Synchronization and linearity

Conclutions

 \rightarrow Timepix detectors which were already tested at SPS energies and fluxes showed very good results.

 \rightarrow Due to DeadTime of Timepix + Fitpix we lose 88-99% of useful data.

 \rightarrow The possible solution is to use Timepix3 with Katherine electronics with which we lose <1% of data and are able to follow beam evolution in time with 1.56 ns resolution.

 \rightarrow Due to the fact that Timepix (Timepix3) is (will be) inside RomanPot (RP) it produces secondaries from interactions with primary beam halo.

Additional slides

Test with beta-source. Investigation/Studying of the COBRA electronics August 2017

Synchronization method

