

Accelerators based compact sources of quasi-monochromatic radiation for phase-contrast X-ray imaging

Oleksandr Lebed

The fifth French-Ukrainian workshop on the instrumentation developments for HEP Orsay, France, LAL, November 6-8, 2017

Participation of IAP in LIA IDEATE

Institute of Applied Physics National Academy of Sciences of Ukraine (Sumy, Ukraine)

The LIA IDEATE covers R&D and optimisation of innovative technologies for the experiments at the particle accelerators and development of accelerator techniques.

Research program and projects

- R&D of detector technologies
- Accelerator techniques
- Experimental platforms
- R&D on instrumentation for medical applications
- Developments for flavour physics
- Developments for nuclear physics
- Developments for hadron physics
- Pedagogical activities

Phase-contrast X-ray imaging

Phase-contrast X-ray imaging (PCI) is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images.

3

Phase-contrast X-ray imaging. Experimental realisation

- Crystal interferometry
- Grating Bonse-Hart
- Analyzer-based imaging
- Propagation-based imaging
- Edge-illumination
- Grating-based imaging (Talbot interferometry)

Required characteristic of radiation for X-ray phase contrast

Energy range	ΔΕ/Ε	Source size	Size on the object	Flux on the object	Coherence
> 10 keV	3%	small	50 cm	> 10^(9) ph/s	yes

O. Lebed, IAP NAS of Ukraine, LAL, 6 November 2017,

Accelerators based sources of X-ray for phase-contrast 4

Accelerators based compact source of quasi-monochromatic X-ray at IAP NASU

3D model and a general view of the quasimonochromatic X-ray source with ion excitation.

Multimatrix X-Ray detector for phase contrast imaging experiments

D ·	
Racic	noromotore
Dasic	

Sensitive Area	90x60mm
Optical Configuration	2x2 cells
DQE(0)	0.44
Optical Resolution	up to 12 pl/mm
Dynamic Range	equal to 14bits
Energy of detected X-	9-100keV (for different
Ray quantum	conversional screens)
Frame rate	15-150 FPS
External digital interface	Gigabit Ethernet

X-Ray to visible light convertor (fluorescent screen)

Optical scheme of the detector

Photo of the Multimatrix Hybrid X-Ray Detector

3D CAD Driwing of the Multimatrix Hybrid X-Ray DetectorO. Lebed, IAP NAS of Ukraine, LAL, 6 November 2017,Accelerators based sources of X-ray for phase-contrast6

Compton backscattering process

Energy of X-ray photons, which are emitted by a relativistic electron in collision with the laser pulse

$$\hbar\omega_{x} \approx \hbar\omega \frac{2\gamma^{2} \left(1 + \cos\theta_{i}\right)}{1 + \gamma^{2}\theta^{2}}$$

X-ray sources based on Compton backscattering

	Туре	Energy [KeV]	Flux (@ 10% bandwidth)	Source
			oundwidth)	(um)
*PLEIADES (LLNL) [11,12]	Linac	10-100	10^{7} (10 Hz)	18
*Vanderbilt [13,14]	Linac	15-50	10^8 (few Hz)	30
*SLAC [15]	Linac	20-85		
*Waseda University [16,17]	Linac	0.25-0.5	2.5 10 ⁴ (5 Hz)	
*AIST, Japan [18]	Linac	10-40	10 ⁶	30
*Tsinguha University [19]	Linac	4.6	$1.7 \ 10^4$	
*LUCX (KEK) [20]	Linac	33	5 10 ⁴ (12.5 Hz)	80
+ UTNL, Japan [21,22]	Linac	10-40	10 ⁹	
MIT project [23]	Linac	3-30	$3 \ 10^{12} (100 \text{ MHz})$	2
MXI systems [24]	Linac	8-100	$10^9 (10 \text{Hz})$	
SPARC –PLASMONX [25]	Linac	20-380	$2\ 10^8$ - $2\ 10^{10}$	0.5-13
Quantum Beam (KEK) [26,27]	Linac		10^{13}	3
*TERAS (AIST) [28]	Storage ring	1-40	$5 \ 10^4$	2
*Lyncean Tech [29,30,31]	Storage ring	7-35	$\sim 10^{12}$	30
Kharkov (SNC KIPT) [32]	Storage ring	10-500	2.6 10 ¹³ (25 MHz)	35
TTX (THU China) [33,34]	Storage ring	20-80	$2 10^{12}$	35
ThomX France [35]	Storage ring	50	10^{13} (25 MHz)	70

ThomX - Conceptual Design Report

The spectral line broadening

Estimation of spectral line broadening for the parameters of ThomX source

$$\omega_{x0} = \omega \frac{2\gamma^2 \left(1 + \cos \theta_i\right)}{1 + \gamma^2 \theta^2}$$

Electron energy dispersion $\Delta \gamma / \gamma \sim 0.6\%$

$$\omega_{\chi}(\gamma) \approx \omega \frac{2(\gamma + \Delta \gamma)^{2} (1 + \cos \theta_{i})}{1 + \gamma^{2} \theta^{2}} = \omega_{\chi_{0}} \left(1 + \frac{2\Delta \gamma}{\gamma}\right) \Longrightarrow \frac{\Delta \omega_{\chi}(\gamma)}{\omega_{\chi_{0}}} = \frac{2\Delta \gamma}{\gamma} \sim 10^{-3}$$

Spectral width of pulsed laser $\Delta \omega / \omega = 2\pi / \omega \tau \approx 0.35\%$

The same energy width corresponds of X-ray emission angle $\theta \sim 1 \text{ mrad}$

$$\frac{\Delta\omega_{\chi}}{\omega_{\chi}} = \sqrt{\left(\frac{2\Delta\gamma}{\gamma}\right)^{2} + \left(\Delta\theta_{i}\tan\frac{\theta_{i}}{2}\right)^{2} + \left(\frac{\Delta\omega}{\omega}\right)^{2} + Nonlinear_Effects}$$

Compton backscattering process. Accounting of a pulse character of the laser field

Conservation law $p_i + \hbar k = p_f + \hbar k_x$

Four-potential of pulsed laser wave

$$A^{\mu}_{pul}(\varphi) = g\left(\frac{\varphi}{\omega\tau}\right) A^{\mu}_{mon}(\varphi)$$

Quasi-monochromatic condition

Here φ is the laser-wave phase, $A^{\mu}_{mon}(\varphi)$ is four-potential of plane monochromatic wave, the function $g(\varphi/\omega\tau)$ is envelope function of the four-potential of an external wave, that allows us to take into account the pulsed character of a laser field.

Klein -Nishina formula can be summarized in the case, when an external laser field has a pulsed character. The energy of X-ray photon has a finite spectral width even at the fixed emission angle. The differential probability of one-photon Compton backscattering :

$$\frac{dW}{dW_{KN}} = N_{pul} \frac{\tau}{\tau_e} \int_{0}^{\tau_e/\tau} d\xi \cdot g(\xi) \int_{-\infty}^{\infty} d\xi' \cdot g(\xi') \cos\left(\tau \left(\omega_x + E_f - E_i - \omega\right) \left(\xi' - \xi\right)\right)$$

Compton backscattering process. Accounting of a pulse character of the laser field

For the ThomX project typical laser parameters are: $\hbar \omega = 1.23$ eV, $\tau = 1$ ps, and the electron beam parameters are: $E_i = 50$ MeV ($\gamma \approx 100$), $\tau_e = 20$ ps.

Figure. Broadening of X-ray spectrum caused by a pulsed character of laser field for the ThomX typical laser pulse and the electron beam parameters. The emission angle $\theta = 1 / \gamma$. Solid line corresponds to the envelope function in the form of Gaussian function $g(\xi) = \exp(-\xi^2)$, dotted line corresponds to Lorentz function $g(\xi) = (1 + \xi^2)^{-1}$.

Thank you for attention!