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Outline
• Introduction:  positron sources are critical  components of  the future 
Linear and Circular Colliders

• Hybrid positron source

• Positron sources for the ILC and CLIC

• Experimental test of hybrid positron source at KEK

• FCC-ee positron source

•Positrons  for  muons:  LEMMA (Low  EMittance  Muon  Accelerator) 
positron source
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Background
• High intensity low emittance positron beams are required in HEP, especially by the future 

Linear and Circular Collider projects (ILC, CLIC, FCC…). 

• It  has  been  comprehensively  analysed  that  having  both  beams  polarized  will  increase 
precision of the measurements and provides versatile methods to search for New Physics.

• Polarized electron beams are more easily to obtain with e.g. AsGa photocathodes (~90% of 
polarization).

• Production of polarized positron beams remains a challenge.

• Strong  efforts  are  put  on  the  development  of  the  high  intensity  unpolarized/polarized 
positron source for the future colliders.
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Introduction
☞ Why e+ sources are critical components of the future linear/circular colliders?

• e+  are  produced  within  large  6D  phase  space  (e+/e-  pairs  produced  in  a  target-
converter).

• Thermo-mechanical  effects  in  the  target  limit  the  e+  source  intensity  (sophisticated 
targets and cooling systems).

• e+  produced  are  transported  and  transferred  to  the  DR  with  their  phase  space 
characteristics (transport and injection at high 6D emittance).

• High luminosity at the future machines => needs high average and peak e- and e+ flux.  
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Conventional positron source: bremsstrahlung and pair conversion

Energy deposition in target => Heating
Inhomogeneous energy deposition => 
Peak Energy Deposition Density (PEDD) 
=> mechanical stresses => target failure!

• SLC e+ source: ~ 3.5e10 e+/bunch & 1 bunch/train & 120 Hz => 0.042e14 e+/s

• CLIC (3 TeV) e+ source: ~ 4e9 e+/bunch & 312 bunch/train & 50 Hz => 0.6e14 e+/s

• ILC (500 GeV) e+ source: ~ 2e10 e+/bunch & 1312 bunch/train & 5 Hz => 1.3e14 e+/s

• LHeC (ERL) e+ source: ~ 2e9 e+/bunch & 2e7 bunches/s (CW operation) => 440e14 e+/s

• FCC-ee e+ source: ~4e10 e+/bunch in the collider & 3 kHz => 1.2e14 e+/s (only ~0.05e14 e+/s @ Injector )

Positron sources

☞ Very difficult to realize for the future linear colliders due to  the target thermal and mechanical stresses issues
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Better solution: Two-stage process to generate the positron beam 

First stage:  γ-ray generation 
Second stage: e-/e+ and γ-ray beams are separated and the latter is sent to the target-converter

The γ-rays can be generated by the following methods: 
•Radiation from helical undulator 
•Channeling radiation
•Compton scattering

• γ-rays produced by channeling effect in the oriented crystals  can be used for the unpolarised 
positron source.

•Polarized positrons can be obtained by using polarized γ rays produced in helical undulator or in 
Compton scattering.

Charged particles are swept off => the deposited power and PEDD are strongly reduced

Positron sources
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☞ Use the intense radiation emitted by high energy (some GeV) electrons channeled along a crystal axis => channeling radiation.

e-
e+ e- g• Thick crystals: radiation and conversion in the same target

• Hybrid scheme: thin crystal-radiator & thick amorphous-converter

• Optimized hybrid scheme: decrease of the deposited energy 

by sweeping off the e+/e- (from crystal)

e-

Three approaches have been studied experimentally

7
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Positron Sources using channeling
Advantages of optimized hybrid scheme:

• Thin crystal => higher enhancement, more γ produced per e- => less energy deposition 
=> less heating => higher potentials

• Thick amorphous converter: high conversion γ → -e-/e+ 

• Distance between radiator and converter: use sweeping magnet to sweep off e+/e- after 
the crystal => less energy deposition, weaker density: avoids high values of PEDD

Typical parameters of the hybrid e+ sources:

• Thickness of the crystal: optimum thickness is between 1-2 mm for E ≤ 10 GeV (higher values  saturation) 

• Thickness of the amorphous target (high Z material): compromise between the requested yield and the amount of 
deposited energy => what is essential is the accepted yield

• Distance between the radiator and converter: 1) installation of a sweeping magnet 2) increase the size of the photon 
beam => contribute to lower the deposited energy and its density

• Incident e- energy: some GeV (to get Uch>> Ubremss ), U is the energy radiated

• Crystal kind and orientation: Tungsten W => high atomic potential (1 keV) at <111> orientation
8
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Positron Sources recap

• Charged particles are swept off after the crystal target => the deposited power 
and PEDD (Peak Energy Deposition Density) are strongly reduced

• Granular  target  can provide better  heat  dissipation associated with  the  ratio 
Surface/Volume of the spheres and the better resistance to the shocks

1) Conventional positron target: bremsstrahlung and pair conversion

2) Hybrid positron target: two-stage process to generate positron 
beam. Channeling (crystal target) and pair conversion (amorphous 
target)

Granular target-converter

Recent  idea:  to  replace  the 
bulk  target-converter  by  a 
granular  one made of small 
spheres

• Classical e+ source
• It was employed to produce e+ beam at the existing machines (ACO, DCI, SLC, 

LEP, KEKB…)

Several  experiments  had  been  conducted  to  study  the  hybrid  e+  source  (proof-of-principle  experiment  in  Orsay, 
experiment @ SLAC, experiment WA 103 @ CERN and experiments @ KEK).
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Positron Sources : ILC baseline
Efforts are shared between USA, UK, CERN, Germany and Japan. A proof-of-principle 
experiment E-166 in FFTB at SLAC.

Combined injector complex to produce positron beams

SC helical undulator: 147m active length (max 231 m), 11.5 mm period, K ~0.92 (B ~0.86 T) with beam aperture 
5.85 mm 
 e+  target:  400  m  downstream  the  undulator,  0.4X0  (1.4  cm)  thickness,  Ti6Al4V  rim  rotated  with  100  m/s 
tangential speed 
 Flux concentrator: 12 cm length, Bmax = 3-5 T, Bend = 0.5 T 
 NC capture RF: 1.3 GHz, ~10 m length up to 125 MeV
 e+ polarization: default ~30%, polarization upgrade up to 60% with photon collimators
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ILC baseline: e+ target issue

Ti6Al4V 

Radiator (C
u) 

Cooler (C
u) photons 

Radiative  thermal  cooling 
of e+ target (DESY/CERN)

Polarization upgrade to 50-60% => increase in energy deposition 
and PEDD due to beam collimation.

Active Sliding Contact 
Cooling  of  e+  target 
(IHEP/ANL)

prototype @LLNL
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e+ target: wheel made of Ti6Al4V (1m diameter and 0.4X0 (1.4 
cm) thick. During operation the outer edge of the rim moves at 
100 m/s (2000 rpm) to smear out long ms pulses. 
Design and prototyping of the Rotating Target FerroFluidic Seal 
and the capture magnet are ongoing.

Energy deposition @ 500 GeV (nom. lumi):  2 kW <=> ∆Tmax/pulse~130 K, 
photon beam spot size on target ~1mm => PEDD 67.5 J/g. 
Max. thermal stress in target => fatigue limit and ultimate tensile strength 
in Ti material.
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ILC baseline: critical points
• Undulator: 150 m  long SC helical undulator  with a ~6 mm inner diameter vacuum chamber 

(prototyping STFC/RAL/Daresbury)

• Photon collimator: absorbs ~ 50% of photon beam power (DESY)

• Target-converter:  target  wheel  (Lancaster/Cockcroft/STFC/LLNL),  rotating  vacuum  seal 
(LLNL), target cooling system (radiative thermal cooling DESY/CERN and active sliding contact 
cooling IHEP/ANL), remote handling/target removal engineering design (IHEP). 

• Thermal shock problem: energy deposition causes shockwaves in the material => target can be 
broken if induced thermal stress exceeds the ultimate tensile strength of the target material  (SLC 
e+ target failure)

• e+ capture system: flux concentrator (LLNL)
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ILC unpolarised positron source
Efforts are shared between ANL, IHEP, Hiroshima U, U of Tokyo, KEK, DESY, U of Hamburg, CERN. Following 
design is the backup for proposed ILC e+ source.

• The proposed ILC e+ source contains risks => backup solution
• So-called 300 Hz conventional source: e+ generation in 63 ms (cf. undulator : in 1 ms)

High current,  high rep rate  driver  linac  ~6  GeV 
and booster linac ~5 GeV.Conventional e+ source but still needs some more R&D

Moving target (slow rotation ~5 m/s required vs. 
1/20 of undulator scheme)

Flux concentrator (pulse length ~1 µs  (cf. ~1 ms in 
undulator  scheme)  =>  almost  existing  FC 
technology. 
Shock waves and thermal dynamics:  in principle 
OK because triplet to triplet separation 3.3 ms in 
time but studies are ongoing.

Target-converter: a  full target prototype d = 500 mm (no water channels and not W 
material) in two years for continuous running test. 
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ILC unpolarised positron source
Hybrid target parameters: 

• 1 mm thick W crystal <111>, incident e- energy: 10 GeV 

• Granular target: 6 layers  

• Total positron yield of  about ~14 e+/e-  

• Deposited energy of ~400 MeV/e-  

• Energy deposition density  of about ~1.4 GeV/cm^3 /e-

Alternative solution: hybrid target. Efforts are shared between France (LAL, IPNL), KEK and CERN

☞ In the same way as for the conventional scheme, we are proposing after T. Omori 
to modify the beam time structure before the target recuperating the nominal one 
after the DR.
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Primary e- beam
5 GeV

 Distance (crystal-amorphous) d = 2 m

Crystal thickness: 1.4 mm 
Oriented along the <111> axis

Amorphous thickness: 10 mm 

8 e+/e-

1.1⨯ 1010 e-/bunch

crystal amorphous 
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 2 GHz  2 GHz 

2.86 GeV 

γ/e+"

Granular 

AMD 

unpolarized e+ 

Pre-injector  
e+ Linac 

200 MeV 

BC 

Thermionic 
e-  gun 

Bunching 
system 

2.86 GeV 

γ/e" ~ 20 e+/e" ~ 8 

e+/e" ~ 1.6 

e+/e" ~ 1 

Yield:  8 e+/e- (total) => ~ 1 e+/e- @ 200 MeV => CLIC requirements are 
fulfilled.

< 35 J/g
~ 10 kW

0.7 e+/e-

DR acceptance 0.4 e+/e-

Target Parameters Crystal
Material Tungsten W

Thickness (radiation length) 0.4 c0
Thickness (length) 1.40 mm
Energy deposited ~1 kW

Target Parameters Amorphous
Material Tungsten W

Thickness (Radiation length) 3 c0
Thickness (length) 10 mm
PEDD 30 J/g
Distance to the crystal 2 m

8 e+/e-

• Flux  Concentrator  (FC):  peak  field  is  6  T,  DC 
solenoid field  is 0.5 T, length = 20 cm, aperture 40 
mm.

• Accelerating structures: L-band 2GHz, 25 MV/m, 
aperture 30 mm.

@ 200 MeV @ 2.86 GeV
e+ yield, Ne+/Ne- 0.9 0.7
Emittance, μm rad 21 1.4

Required: 4.3 ⨯ 109 e+/bunch
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Positron Sources : CLIC baseline
Efforts are shared between LAL, IPNL and CERN. Hybrid target: baseline design for the CLIC 
positron source
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Positron Sources : CLIC baseline
☞ CLIC e+ source design update (compared to CDR): new beam transport and acceleration design 
from the target to the pre-damping ring

Energy (GeV) Target exit
(e+/e-)

AMD exit 
(e+/e-)

Total yield 
(e+/e-)

Effective 
yield (e+/e-)

3 (new) 4.18 1.38 0.50 0.44
5 (new) 7.14 3.06 1.36 1.21

5 (previous) 8.00 2.80 1.09 0.98
5 (CDR) 8.00 2.10 0.95 0.39

C. Bayar, S. Doebert 

e+  yield  at  the  entrance  of  the  pre-damping  ring  is 
increased by a factor ~3 compared to the CLIC CDR.
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This result allows to reduce the beam current or energy of the electron driver linac => significant cost savings for electron driver linac.
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Experimental activity on hybrid source

Experimental conditions: 
• Energy = 7-8 GeV, single bunch (Frep =1 to 50 Hz), Charge = 1-2 nC
• Emittance (norm)~ 150(H)/63(V)  mm mrad,  beam divergence < 0.1 mrad
• Crystal W: 1mm thick, <111> orientation
• Granular targets: 4, 6 and 8 layers. Bulk target (reference): 8 mm thick
• Temperature rise on the converter : thermocouples

The  experimental  activities  have  restarted  in  KEK (KEKB injector  linac)  in  2015/2016.  Goals:  e+  yield  and  target 
temperature measurements to compare different targets  (Bulk & Granular) =>  e+ source performances.
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Photons and e+ detection: 
• Photon detection: CVD diamond detector 500 μm thick, 4x4 mm2. Weak interaction efficiency 

(~0.3 %) but enough γ rays (>1011 per shot)
• Positron detection: produced e+ are analysed by a spectrometer (60o bending magnet) at 5-20 

MeV/c and then detected by 5 mm lucite Cherenkov detector

Experimental activity on hybrid source

Temperature measurements: 
• Standard K-type thermocouples (with area < 1 mm2) attached to the 

backside of the targets (glued by an epoxy thermal conductive paste)  
• The output has been calibrated (0 -100oC) and sent by a 40 m long 

extension cables to the experimental room

The e+ detection system is simulated by using the GEANT4. Typical momentum acceptance is  
2.6% (FWHM) at the positron momentum 20 MeV/c. Collaboration with V. Rodin (KNU- 
Ukraine, Cockcroft Institute-UK).
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Crystal Target

Sweeping Magnet
e- beam γ/e- beam

Targets

Sweeping Magnet

1.1 T

Granular Targets
Diamond 
Sensor Reference Target

γ/e- beam
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V. Rodin
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Experimental activity on hybrid source

Rocking	curve	
measured	by	
Diamond	Sensor

To align <111> crystal axis with respect to the electron beam, a 2D angular scan has been performed.
Data suggest an increase by a factor of two in the photon production => the simulations and further analysis of 
the background are under way to describe the experimental data.

2D scan (5.7 deg. in θx and θy) 

STEREOGRAPHIC PROJECTION 

<110> axis is at 35.2 degrees from  <111> and <100> axis is at 54.7 degrees from  <111>

On the border of the scanned area => the axis <455>
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Experimental activity on hybrid source
Bunch-by-bunch	 temperature	 rise	

8	mm	thick	bulk	target 6-layers	granular	target

Positron  yield:  once  the  crystal  axis  was 
aligned  with  the  e-  beam,  e+  yield  was 
measured  systematically  for  various 
conditions  in  hybrid  and  conventional 
schemes.

Temperature measurements: it was performed in 
order  to  estimate  the heat  load in  the bulk and 
granular converters. 
Bunch-by-bunch  temperature  rise  =>  PEDD 
information. 
Temperature  at  equilibrium  =>  total  energy 
deposition.
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• RF-gun 

• e-/e+ linac up to 6 GeV

• 1.54 GeV Damping Ring

• SPS as a Pre-Booster Damping Ring (6 - 20GeV)

• Booster Ring (20 - 45.6 GeV)
The  main  6  GeV  linac  hosts  the  e+  source.  The 
positrons are produced with 4.46 GeV e- beam.

23

☞ FCC-ee would be the first step towards the long-term goal of a 100 TeV proton-proton collider. FCC-ee 
operation is foreseen at 91 GeV (Z-pole), 160 GeV (W pair production threshold), 240 GeV (Higgs resonance) and 
350 GeV (t-tbar threshold). 

The FCC-ee positron injector has to be designed to produce the positron beam with the requested 
parameters accepted by the DR (participation of the LAL group)

FCC-ee Positron Source
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Primary e- beam
4.46 GeV

FCC-ee Positron Source

Final drawing to be done!!!

e+ acceleration up to 1.54 GeV

Final drawing to be done!!!

2.66 ⨯ 1010 e-/bunch ~ 4.3 nC 
(main e- beam)

5.3 ⨯ 1010 e-/bunch ~ 8.5 nC       
(for e+ production)

2 bunches/pulse spaced by 60 ns Requirement @ DR: 
2.66 ⨯ 1010 e+/bunch (4.3 nC)
~0.5 e+/e- without safety factor

e+ production and capture section

24

Injector parameters: summer 2017
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FCC-ee Positron Source (Target)

e+ target optimisation
Tungsten radiation length X0 is 0.35 cm.

General conditions: E = 5 GeV, σx,y = 2.5 mm, C = 8.5 nC, 2 bunches @ 200 Hz. 
Incident beam power is 15 kW.

Target thickness
d=4.5X0 (16 mm)

PEDD for 10nC/bunch
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FCC-ee can employ the conventional/hybrid positron source. Studies are 
ongoing.

Comparison between the two options: conventional/hybrid (preliminary)

Conventional scheme (4.5 X0):

Hybrid scheme (1.4 mm/10 mm)

Hybrid scheme with granular converter (6 layers)

Kind of e+ source Deposited energy PEDD

2.7 kW

1.2 kW

0.85 kW

2.1 J/g

1 J/g

0.6 J/g

According to SLC experience,  W74Re26 material  has a PEDD limit of  35 J/g (safe  value to avoid target 
failure).
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Positrons for muons
Motivation: muon collider (get good muon beam emittance at the production). A μ+μ- collider offers an ideal 
technology to extend lepton high energy frontier in the multi-TeV range.

• Conventional muon production: from proton on target. π decays from proton on target have typical 
Pμ ~ 100 MeV/c. Problem: large transverse momentum of muons => need to cool the emittance.

• Novel proposal: direct μ pair production: e+e- → μ+μ- just above the μ+μ- production threshold (√s 
≈ 0.212 GeV) with minimal muon energy spread. Direct annihilation of ~45 GeV e+ with atomic e- in 
a thin target (~0.01 radiation length). Very small emittance at μ  production point => no cooling 
needed! Disadvantage: production rate. Much smaller cross section compared to protons (~mb) =>                   
σ(e+e- → μ+μ-) ≈ 1 μb at most.

• Solution:  high intensity positron beam should hit the target with a large frequency => target in a 
positron ring!
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LEMMA Positron Source
☞ Low EMittance Muon Accelerator (LEMMA). Collaboration with LNF.

Goal: produce ~ 1011 μ/s @Target.  Efficiency ~10-7 (with 3mm Be target).

Flux of 1018 e+/s is needed @Target (LHeC like e+ source).

Stored  e+  beam  with  μ  target  needs  the  largest  possible  lifetime  to 
minimize positron source rate.

Preliminary scheme for low 
emittance μ production

1) e+ source. Transport of the e+ beam to the ring.

2) e+ ring: 6.3 km 45 GeV storage ring with target for muon production. 

3) μ+μ- production and their transport to the collider. Muons produced by 
the e+ beam on target with  E(μ) ≈ 22 GeV, γ(μ) ≈ 200 => τlab(μ) = 500 μs
go to the μ rings: 60 m isochronous and high mom. acceptance rings will 
recombine μ bunches for ~ 1 τμlab ≈ 2500 turns.

4) Fast μ acceleration and transport to muon collider. M. Boscolo
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LEMMA Positron Source challenges
• To overcome low muon production efficiency (< 10-5), the e+ rate ~ 1018 e+/s (or  ~3 × 1011 e+/

bunch inside the main ring) is needed. Extremely high e+ flux is needed!

• Preliminary simulations of the 45 GeV positron ring with a target show a e+ lifetime of about 40 
turns for a 3 mm Be target.  The time structure of the beam on the positron target  (or CW 
operation) may impose a true technological challenge for the e+ source design.

• Positron source is a major R&D issue.

Participation of the LAL group: 

Study of the e+ source for the 45 GeV ring

Studies on the positron/muon targets

Study  of  an  auxiliary  e+  source  using   photons  from  the 
muon target (to compensate the e+ losses in the main ring).

28

F. Collamati
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Positron source performances



06/11/2017 I. Chaikovska  French-Ukrainian workshop (Orsay, France) 

Positron source performances
SLC LEP (LIL) KEKB/SUPER KEKB FCC-ee (conv.)*

Incident e- beam energy 33 GeV 200 MeV 3.3/3.3 GeV 4.46 GeV
e-/bunch [1010] 3-5 0.5 - 30 (20 ns pulse) 6.25/6.25 5.53

Bunch/pulse 1 1 2/2 2
Rep. rate 120 Hz 100 Hz 50 Hz/50 Hz 200 Hz

Incident Beam power ~20 kW 1 kW (max) 3.3 kW 15 kW
Beam size @ target 0.6 - 0.8 mm < 2 mm />0.7 mm 0.5 mm

Target thickness 6X0 2X0 /4X0 4.5X0

Target size 70 mm 5 mm 14 mm
Target Moving Fixed Fixed/Fixed

Deposited power 4.4 kW /0.6 kW 2.7 kW
Capture system AMD λ/4 transformer /AMD AMD
Magnetic field 6.8T->0.5T 1 T->0.3T /4.5T->0.4T 7.5T->0.5T

Aperture of 1st cavity 18 mm 25mm/18 mm /30 mm 20 mm
Gradient of 1st cavity 30-40 MV/m ~10 MV/m /10 MV/m 30 MV/m

Linac frequency 2855.98 MHz 2998.55 MHz 2855.98 MHz 2855.98 MHz
e+ yield @ CS exit ~1.6 e+/e- ~3 ⨯10-3 e+/e- (linac exit) /~0.5 e+/e- ~0.7 e+/e-

Positron yield @ DR ~1.1 e+/e- 0.4 e+/e-
DR energy acceptance +/- 2.5 % +/- 1 % (EPA) +/- 1.5 % (1 σ) +/- 8 %

Energy of the DR 1.15 GeV 500 MeV NO/1.1 GeV 1.54 GeV

*F
C

C
-e

e 
un

de
r s

tu
dy
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Nominal parameters of ILC e+ source



Nominal parameters of ILC e- source
Parameter Symbol Value Units 
Electrons per bunch (at gun exit) N 3x1010 Number 
Electrons per bunch (at DR injection) N 2x1010 Number 
Number of bunches nb 1312 Number 
Bunch repetition rate fb 1.8 MHz 
Bunch train repetition rate frep 5 Hz 
FW Bunch length at source Δt 1 ns 
Peak current in bunch at source Iavg 3.2 A 
Energy stability σE/E <5 % rms 
Polarization Pe 80 (min) % 
Photocathode Quantum Efficiency QE 0.5 % 
Drive laser wavelength  λ 790±20 (tunable) nm 
Single bunch laser energy ub 5 µJ 



Energy deposition/accumulation on Target 

Centre-of-mass energy Ecm (GeV) 

Parameter     200 230 250 350 500 
Positron pulse production rate Hz 5 5 5 5 5 
Electron beam energy (e+ prod.) GeV 150 150 150 178 252 

Number of electron bunches nb 1312 1312 1312 1312 1312 

Electron bunch population N+  ×1010  2 2 2 2 2 
Required undulator field B T 0.86 0.86 0.86 0.698 0.42 
undulator period length λu" cm 1.15 1.15 1.15 1.15 1.15 
undulator K K 0.92 0.92 0.92 0.75 0.45 
Average photon power on target kW 91 100 107 55 42 
Incident photon energy per bunch J 9.6 9.6 9.6 8.1 6.0 
Energy deposition per bunch (e+ prod.) J 0.72 0.72 0.72 0.59 0.31 
Relative energy deposition % 7% 7% 7% 7.20% 5% 
Photon rms spot size on target mm 1.4 1.4 1.4 1.2 0.8 

Peak energy density in target J/cm3 232.5 232.5 232.5 295.3 304.3 
    J/g 51.7 51.7 51.7 65.6 67.5 



Parameter! Unit!
CLIC  

polarized 
electrons!

CLIC 
positrons! CLIC booster 

E! GeV! 2.86! 2.86! 9 
N! 109! 4.3/7.8! 4.3/7.8! 3.75/6.8 
nb! -! 312/354! 312/354! 312/354 
Δtb! ns! 1! 1! 0.5 
tpulse! ns! 312/354! 312/354! 156/354 
εx,y! µm! < 100! 7071, 7577! 600,10 ·10-3 

σz! mm! < 4! 3.3! 44 ·10-3 

σE! %! < 1! 1.63! 1.7 
Charge stability 

shot-to-shot! %! 0.1! 0.1! 0.1 

Charge stability 
flatness on flat top! %! 0.1! 0.1! 0.1 

frep! Hz! 50! 50! 50 
P! kW! 29! 29! 85 

CLIC injector beam parameters

500 GeV  



CLIC main parameters


