Gravitational waves

Pierre Gruning, LAL-CNRS | French-Ukrainian workshop 6-8th November 2017

What are Gravitational waves?

- Solution from General Relativity derived by A. Einstein in 1916, first experiments in the 60s
- Gravitation is a curvature of the space-time metric
- Any massive object will introduce a deformation of the metric
- Far from sources they can be seen as a perturbation of the metrics ie :
 - They are ripples of space-time produced by rapidly accelerating mass distributions
 - · Provide info on mass displacement
 - Weakly coupled access to very dense part of objects

Main proprieties:

- Propagate at speed of light
- Two polarizations '+' and 'x'
- Produce a differential effect on metric
- Emission is quadrupolar at lowest order
- Need compact and relativistic objects

The Gravitational Wave Spectrum

How can we detect them?

5 types of experiments to detect GW:

- Looking at B-modes in the CMB (Cosmic Microwave Background)
- PTA (Pulsar Timing Array)
- Measuring orbital period of binary pulsars
- Resonant bars
- Laser interferometry

07/11/2017

How can we detect them?

<u>Laser interferometry</u>

07/11/2017

The GW detectors networks

LIGO/Virgo type interferometers

- Mirrors act as test masses of the metric
- Using differential effect -> variation of detected light at ouput ports

$$P_{\text{det}} = \frac{P_{in}}{2} (1 + C\cos(\Delta \phi))$$

$$C = \frac{2r_1r_2}{r_1^2 + r_2^2}$$

$$\equiv \Delta \phi_{\text{OP}} \equiv \frac{\delta \phi_{\text{GW}}}{\Delta}$$
$$\Delta \phi = \frac{2\pi (I_2 - I_1)}{\lambda} + \frac{2\pi (I_2 + I_1)h(t)}{\lambda}$$

$$P_{\text{det}} = \frac{P_{in}}{2} \left(1 + C\cos(\Delta\phi_{OP}) - C\sin(\Delta\phi_{OP}) \times \delta\phi_{GW}(t) \right)$$

Advanced generation!

Goal: $(L_x - L_y)/L_x = 10^{-23}$

High quality optics – 40 kg

High power laser

Suspended Optics

Attenuation 10¹⁴ @ 10 Hz

Main sources of noise

LIGO/Virgo sensitivity

AdLIGO design sensitivity

Ongoing work to increase sensibility, next step: beat standard quantum limit using squeezed light

Frequency-dependent Squeezing used to simultaneously squeeze both radiation pressure and shot noise at different frequency regions where they dominate

14th september 2015: First direct detection of gravitational waves

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal.

LIGO has seen the merging of 2 stellar black holes that occured 1,3 billion years ago:

- Merger of 2 black holes of 36 and 29 solar masses
- Final black hole of 62 solar masses
- Energy equivalent of 3 solar masses radiated in gravitational waves
- Source distance : 410 MPc = $1,3.10^{25}$ m = $1,3.10^{9}$ Ly To compare, the diameter of our galaxy is $\approx 100~000$ Ly

But with only 2 detectors the event is localized in an area of 600 deg²

But since then new detections were made:

GW150914: first direction detection of gravitational waves (BBH)

GW151226 : second detection from (BBH) → LIGO

GW170104 : third detection from (BBH)

GW170814 : first 3 detector detection (BBH)

GW170817: first 3 detector detection of a BNS merger

→ LIGO + Virgo

GW170814: Virgo first detection

 Signal arrived at on August 14, 2017 10:30:43 UTC at Livingston, 8 ms later at Hanford, 14 ms later at Virgo;

Random chance to have signal in Virgo < 0.3 %

false alarm rate < 1 in140,000 years

A new binary black holes

Source parameters

Primary black hole mass m_1	$30.5^{+5.7}_{-3.0}{ m M}_{\odot}$
Secondary black hole mass m_2	$25.3^{+2.8}_{-4.2}\mathrm{M}_{\odot}$
Chirp mass \mathcal{M}	$24.1^{+1.4}_{-1.1}\mathrm{M}_{\odot}$
Total mass M	$55.9^{+3.4}_{-2.7}\mathrm{M}_{\odot}$
Final black hole mass $M_{ m f}$	$53.2^{+3.2}_{-2.5}\mathrm{M}_{\odot}$
Radiated energy E_{rad}	$2.7^{+0.4}_{-0.3}\mathrm{M}_{\odot}\mathrm{c}^2$
Peak luminosity ℓ_{peak}	$3.7^{+0.5}_{-0.5} \times 10^{56} \mathrm{erg s^{-1}}$
Effective inspiral spin parameter $\chi_{\rm eff}$	$0.06^{+0.12}_{-0.12}$
Final black hole spin $a_{\rm f}$	$0.70^{+0.07}_{-0.05}$
Luminosity distance $D_{ m L}$	$540^{+130}_{-210}~{ m Mpc}$
Source redshift z	$0.11^{+0.03}_{-0.04}$

Chirp mass:
$$M_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left[\frac{5}{96} \ \pi^{-\frac{8}{3}} f^{-\frac{11}{3}} \dot{f} \right]^{3/5}$$

Better sky localisation

Error in sky area: factor 20!
Reduced incertitude in distance by 1.5

GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Abbott et al., PRL 119, 141101

3 days later ...

- SNR \sim 32.4, FAR \sim 110⁻⁶ year ⁻¹
- Long event (~100 secs) can be seen in the data, light masses system!
- Probability to have at least one neutron star is important
- Possible electromagnetic counterpart!
- Already a possible association with a gamma ray-burst

Source parameters

Using LIGO+Virgo data

	Low-spin priors ($ \chi \le 0.05$)	High-spin priors ($ \chi \le 0.89$)
Primary mass m_1	$1.36-1.60M_{\odot}$	$1.36-2.26M_{\odot}$
Secondary mass m_2	$1.17-1.36M_{\odot}$	$0.86-1.36M_{\odot}$
Chirp mass M	$1.188^{+0.004}_{-0.002}M_{\odot}$	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7 - 1.0	0.4 - 1.0
Total mass $m_{ m tot}$	$2.74^{+0.04}_{-0.01}{ m M}_{\odot}$	$2.82^{+0.47}_{-0.09}{ m M}_{\odot}$
Radiated energy E_{rad}	$>0.025M_{\odot}c^2$	$>0.025\mathrm{M}_{\odot}\mathrm{c}^2$
Luminosity distance $D_{\rm L}$	$40^{+8}_{-14}{ m Mpc}$	$40^{+8}_{-14}{ m Mpc}$
Misalignment of total angular momentum and line of sight	≤ 56°	≤ 55°
using counterpart location	≤ 30°	$\leq 30^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 7 00
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

What an alert!

P(GW-GRB only by chance) < 5 10⁻⁸

Key role from Virgo in the localisation

« Multi-messenger observations of a binary neutron star merger », Abbott et al., ApJ, 2017

GW170817 localization		
2 interferometers (HL)	AddingVirgo (HLV)	
190 deg ² , distance 40 Mpc	28 deg ² , distance 40 Mpc Volume : 380 Mpc ³	

Less than 100 galaxies could be the host of the event!!

The full campaign (up to now)

Kilonova

- During merger phase rich neutrons matter could produce heavy elements by neutron capture (r-process)
- Quasi isotrope emission, heated by radioactivity, emission expected to shift from blue to red during cooling

Main results with GW170817

- GW170817 is the closest (and loudest) GW event ever observed
- First binary neutron stars system detected with GW
- Having three detectors allow to have a quite good localization and allow a full observation campaign
- Confirmed that this BNS is the central engine of a short GRBs association with GRB170817A > 5.3 σ
- Complete multi-messenger follow-up campaign confirm also association with a kilonova
- Start to put some constraints on EOS
- Test of fundamental physics can also be performed
- A first H₀ independent measurement

Common GW-GRB analysis

Test for fundamental physics using time delay and source distance

- Speed of gravity: $-3.10^{-15} \le \frac{v_{GW} v_{EM}}{v_{EM}} \le +7.10^{-16}$
- Equivalent principle (Shapiro effect) :

$$-2.6\,10^{-7} \le \gamma_{GW} - \gamma_{FM} \le 1.2\,10^{-6}$$

Deviation to Einstein-Maxwell

$$\delta t_{S} = -\frac{1+\gamma}{c^{3}} \int_{r_{e}}^{r_{o}} U(r(I)) dI$$

gravitational potential

Lorentz Invariance violation :

Improve between a factor 2 and 10 previous constraints

Conclusion

The field of gravitational is very active:

- First detection of black holes
- Discovery of a new population of binary black holes
- First detection of a neutron star binary in GW domain
- First EM counterpart
- Detector network is growing, on earth, soon in space
- Improvements are ongoing