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What are Gravitational waves ?

* Solution from General Relativity derived by A. Einstein in 1916,
first experiments in the 60s

e Gravitation is a curvature of the space-time metric
* Any massive object will introduce a deformation of the metric

* Far from sources they can be seen as a perturbation of the
metrics ie :

* They are ripples of space-time produced by rapidly accelerating mass distributions e
* Provide info on mass displacement g A -
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* Weakly coupled — access to very dense part of objects

* Main proprieties:
* Propagate at speed of light
* Two polarizations ‘+’ and ‘x’ . .
* Produce a differential effect on metric ':. ::" " *
* Emission is quadrupolar at lowest order .
* Need compact and relativistic objects



Gravitational waves : a brief history
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The Gravitational Wave Spectrum

Quantum fluctuations in the early universe

Binary Supermassive Black
Holes in the galactic nuclei
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How can we detect them ?

5 types of experiments to detect GW :

Looking at B-modes in the CMB (Cosmic Microwave Background)
- PTA (Pulsar Timing Array)

- Measuring orbital period of binary pulsars

- Resonant bars

- Laser interferometry



How can we detect them ?
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The GW detectors networks

LIGO —

Hanford 4-km GEO 600m

Virgo 3-km
7725V




LIGO/Virgo type interferometers

 Mirrors act as test masses of the metric

e Using differential effect -> variation of detected light
at ouput ports
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Advanced generation !

Michelson interferometer High quality
Goal : (L,-L)/L, =102 optics — 40 kg
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Laser
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Strain [1/4Hz]
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Ongoing work to increase sensibility, next step :
beat standard quantum limit using squeezed light

Frequency-dependent Squeezing used to
simultaneously squeeze both radiation
pressure and shot noise at different
frequency regions where they dominate

l ¢ 102 ” FD Squeezing
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14th september 2015 : First direct detection of gravitational waves

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal.

LIGO has seen the merging of 2 stellar black holes that occured 1,3 billion years ago :

Merger of 2 black holes of 36 and 29 solar masses
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But since then new detections were made :

GW150914 : first direction detection of gravitational waves (BBH)
GW151226 : second detection from (BBH) - LIGO

GW170104 : third detection from (BBH)

GW170814 : first 3 detector detection (BBH)
- LIGO + Virgo
GW170817 : first 3 detector detection of a BNS merger




GW170814 : Virgo first detection

e Signal arrived at on August 14, 2017 10:30:43 UTC at
Livingston, 8 ms later at Hanford, 14 ms later at Virgo;
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GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Abbott et al. , PRL 119, 141101
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Source parameters

Primary black hole mass m1 30.5Jjg:g Mqa
Secondary black hole mass mg 25.3125 Mg
Chirp mass M 241711 Mg
Total mass M 55.9“_%:% Mg
Final black hole mass M; 53.2f%:§ Mg
Radiated energy E, .4 2.710-4 Mgc?

Peak luminosity £;c.x

Effective inspiral spin parameter x.g 0.06+8:£

Final black hole spin a; 0,701_L8:8;
Luminosity distance Dr, 540jé§8 Mpc
Source redshift z 0.11j8:83

3.7J_r8'_g x 106 erg g1

H (m1m2)3/5 C3 5 _g _E ]
* _— = —|— 3 3
Chirpmass: M, a5 = G loe ™ fsf

13/5
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GW170814

Credit: LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

GWI170104

LVT151012

GW151226

GW150914

Better sky localisation

Rapid localization
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Final localization

Error in sky area : factor 20 !
Reduced incertitude in distance by 1.5

GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Abbott et al. , PRL 119, 141101
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3 days later ...

SNR ~ 32.4, FAR ~ 110°® year !

Long event ﬁ"'lOO secs) can be seen
in the data, light masses system |

Probability to have at least one
neutron star is important

Possible electromagnetic
counterpart !

Already a possible association with
a gamma ray-burst
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Source parameters

Using LIGO+Virgo data

Low-spin priors (|x| < 0.05)

Primary mass m; 1.36 —1.60 M,
Secondary mass mo 1.17-1.36 My
Chirp mass M 1.18870-90% Mg,
Mass ratio g /m; 0.7-1.0

+0.04
2.74750 Mg

> 0.025 Mg c?

Total mass miot

Radiated energy F,.q4

Luminosity distance Dy, 40:?,1 Mpc

Misalignment of total angular momentum and line of sight < 56°
using counterpart location < 30°

Combined dimensionless tidal deformability A < 800

Dimensionless tidal deformability A(1.4 M) < 800

High-spin priors (|x| < 0.89)
1.36 —2.26 M,
0.86 -1.36 M

0.004
1.188 7002 Mo
04- 1.0

+0.47
2.8270:47 M
> 0.025 Mg ¢?

40™%, Mpc
< Bb°
< 30°

< 700
< 1400
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What an alert |

Signal from BNS

17/08/2017 @ ¢\y170817
12:41:04
Detection from
+2s Fermi/GBM of a short
gamma-ray burst
(GRB170817A)
+16 s GRB alert sent
+40 min Sent alert on GW side
BEGINNING OF THE MULTI-
MESSENGER CAMPAIGN
+1h20min = First reports from temporal
coincidences with
GW170817

Report from Integral/SPI-ACS
Detected GRB170817A

Frequency (Hz)

g Gravitational-wave time-frequency map
300

200
100

a0
-10 -8 -6 —4 -2 0 2 i 6

Time from merger (s)

« Gravitational waves and Gamma-rays from binary neutron star merger: GW170817 and
GRB170817A », Abbott et al., ApJ, 2017

P(GW-GRB only by chance) <5 108
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Key role from Virgo in the
localisation

17/08/2017 GW170817
12:41:04
+5h GW : send updated skymap

with the 3 detectors

16
IPN Fermi /
INTEGRAL

+10h GW : send updated skymap X
with refined algorithm \ :

« Multi-messenger observations of a binary neutron star merger », Abbott et al., ApJ, 2017

GW170817 localization
2 interferometers (HL) AddingVirgo (HLV)

190 deg?, distance 40 Mpc 28 deg?, distance 40 Mpc
Volume : 380 Mpc?

Less than 100 galaxies could be
the host of the event !!

22



17/08/2017 Chandra
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The full
campaign
up to now
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« Multi-messenger observations of a binary neutron star merger », Abbott et al., ApJ, 2017
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nd Metzger, A.. Rev. Nuc. Part. Sci. 2016, 66
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Kilonova

* During merger phase rich neutrons matter could produce
heavy elements by neutron capture (r-process)

* Quasi isotrope emission, heated by radioactivity, emission
expected to shift from blue to red during cooling
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Main results with GW170817

e GW170817 is the closest (and loudest) GW event ever
observed

* First binary neutron stars system detected with GW

* Having three detectors allow to have a quite good
localization and allow a full observation campaign

e Confirmed that this BNS is the central engine of a short
GRBs — association with GRB170817A>5.3 ¢

* Complete multi-messenger follow-up campaign confirm
also association with a kilonova

* Start to put some constraints on EOS
* Test of fundamental physics can also be performed
* Afirst Hy independent measurement




Common GW-GRB analysis

Test for fundamental physics
using time delay and source distance

. Speed of gravity :  —3107°< T I <7107
Vem
4y
* Equivalent principle (Shapiro effect) : ols=——71 j Jirdd
—-2.6107 < Ve — Vi =2 107° gravitational

" : : ntial
Deviation to Einstein-Maxwell potentia

* Lorentz Invariance violation :

Improve between a factor 2 and 10
previous constraints

"Gravitational Waves and Gamma Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A", ApJL in press (2017)






Conclusion

The field of gravitational is very active:

* First detection of black holes

* Discovery of a new population of binary black holes

* First detection of a neutron star binary in GW domain
* First EM counterpart

e Detector network is growing, on earth, soon in space
* Improvements are ongoing



