Cryogenic search for neutrinoless double beta decay of cadmium (CYGNUS project)

Fedor Danevich

Institute for Nuclear Research 03028 Kyiv, Ukraine CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Univ. Paris-Saclay, 91405 Orsay, France

Acknowledgment to the "Jean d'Alembert" grants program of the University of Paris-Saclay

Content

- Introduction: 2β decay and particle physics
- Choice of ¹¹⁶Cd
- 2β of ¹¹⁶Cd with conventional scintillation detectors
- CYGNUS: low temperature breakthrough
- Conclusions and Prospects

Introduction: 2β decay and particle physics

Double beta (2β) decay

and particle physics

Paul Adrien Maurice Dirac

Ettore Majorana

The $2v2\beta$ decay is allowed in the Standard Model, observed in 11 nuclei with $T_{1/2}\sim 10^{19}$ - 10^{24} yr

 $0v2\beta$ decay breaks the Lepton number and is possible if the neutrino is a Majorana particle

- Sensitive to the absolute value of the neutrino mass, the neutrino mass hierarchy, the Majorana CP phases
- The $0v2\beta$ decay can be mediated by presence of right handed currents in weak interactions, massless (or very light) Nambu-Goldstone bosons (majorons), and many other effects beyond the Standard Model

Introduction: 2β decay and particle physics

Status of $0v2\beta$ decay experiments

- The $0v2\beta$ is not observed, the best limits: $\lim T_{1/2} \sim 10^{24} 10^{26} \text{ yr} \rightarrow \langle m_v \rangle \sim 0.1 1 \text{ eV}$
- The experimental sensitivity should be advanced to explore the inverted hierarchy of the neutrino mass $\langle m_{\nu} \rangle \sim 0.02$ -0.05 eV, $T_{1/2} \sim 10^{26}$ 10^{27} yr

Normal Hierarchy
?
Inverted Hierarchy

NME of the $0v2\beta$ decay calculated in the framework of different approaches

- Investigations of several nuclei are requested:
 - observation of $0v2\beta$ in several nuclei
 - the ambiguity of NME calculations
 - possible breakthroughs in detection technique
 - test the NME calculations by using the ratio of lifetimes

[1] J.D. Vergados, H. Ejiri, F. Šimkovic, Neutrinoless double beta decay and neutrino mass, IJMPE 25 (2016) 1630007

Choice of ¹¹⁶Cd

Choice of 2β nuclei

There are crystal scintillators with 82Se, 100Mo and 116Cd, 130Te is component of TeO₂

Choice of ¹¹⁶Cd

^{116}Cd is one of the "gold" 2β nuclei

- High energy of decay $Q_{2\beta}$ =2813.49(13) keV, the $Q_{2\beta}$ is known with high accuracy
- Comparatively high isotopic abundance δ =7.5 2(54)%, possibility of gas centrifugation
- Promising theoretical estimations in the framework of different methods: IBM, QRPA-TBC, QRPA-Jy, NREDF, REDF [1]
- Existence of detector: CdWO₄ crystal scintillators

Production of high quality CdWO₄ crystal scintillators is well established

2β of ¹¹⁶Cd with conventional scintillation detectors

R&D of enriched ¹¹⁶CdWO₄ crystal scintillators

Yield of crystal 87% Losses of ¹¹⁶Cd ≈ 2%

Optical transmission curve of ¹¹⁶CdWO₄ crystal before and after annealing

The excellent optical and scintillation properties were obtained thanks to the deep purification of ¹¹⁶Cd and W, and advantages of the low-thermal-gradient Czochralski technique [1]

¹¹⁶CdWO₄ crystal (510 g) grown in 1986 for the Solotvina experiment [2]

[1] A.S. Barabash et al., JINST 06(2011) p08011 [2] F.A.Danevich et al., JETP Lettt. 49 (1989) 476

• 2β of ¹¹⁶Cd with conventional scintillation detectors

Low background ¹¹⁶CdWO₄ scintillation detector Gran Sasso underground laboratory

DAMA R&D set-up

• 2β of ¹¹⁶Cd with conventional scintillation detectors

Two neutrino 2β decay of ¹¹⁶Cd

The most accurate value of $T_{1/2}^{2\nu2\beta}$ (error 5.3%)

[1] H. Ejiri et al., J. Phys. Soc. Japan 64 (1995) 339; [2] F.A. Danevich et al., Phys. Lett. B 344 (1995) 72; [3] R.Arnold et al., Z. Phys. C 72 (1996) 239; [4] F.A.Danevich et al., PRC 62 (2000) 045501; [5] F.A.Danevich et al., PRC 68 (2003) 035501; [7] R. Arnold et al., PRC 95 (2017) 012007;

2β of ¹¹⁶Cd with conventional scintillation detectors

Limit on $0v2\beta$ decay of ^{116}Cd

Background was reduced by selection of events: ²¹²Bi (α) \rightarrow ²⁰⁸Tl (Q_{β} = 5 MeV, $T_{1/2}$ = 3 min) $0.11 \rightarrow 0.07$ cnts/(keV yr kg) in the ROI 2.7-2.9 MeV

$$T_{1/2}^{0\nu} \ge 2.4 \times 10^{23} \text{ yr}$$

Effective Majorana neutrino mass: $\langle m_{y} \rangle \leq (1.1 - 1.6) \text{ eV } [1-4]$

The best ¹¹⁶Cd 2β experiment realized with a negligible budget

- [1] T.R. Rodr'ıguez, G. Mart'ınez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010).
- [2] F. Šimkovic, V. Rodin, A. Faessler, P. Vogel, Phys. Rev. C 87, 045501 (2013).
- [3] J. Hyvärinen, J. Suhonen, Phys. Rev. C 91, 024613 (2015).
- [4] J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 91, 034304 (2015).

• 2β of ¹¹⁶Cd with conventional scintillation detectors

An important technical result: ¹¹⁶CdWO₄ crystals radiopurity was improved by recrystallization

The Th contamination was reduced by a factor 10, down to the level 0.01 mBq/kg. The total α activity of U,Th was reduced by 3, down to 1.6 mBq/kg [1]

¹¹⁶CdWO₄ crystals of ~μBq/kg purity can be obtained

A significant background reduction is requested for CUPID

[1] G. Wang et al., CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification, arXiv:1504.03599

[2] G. Wang et al.,, R&D towards CUPID (CUORE Upgrade with Particle IDentification), arXiv:1504.03612

Cryogenic search for $0v2\beta$ decay of ^{116}Cd

project CYGNUS: Cryogenic search for neutrinoless double beta decay of cadmium

Energy resolution: 130 keV \rightarrow 5-7 keV at $Q_{2\beta}$ [1,2]

Background can be reduced: \rightarrow 1.4 cnts in 10 keV

ROI over 3 yr

The reduction of background (mainly ²⁰⁸Tl) is expected due to particle discrimination and high energy resolution to α s

$$\alpha \xrightarrow{212} \text{Bi} \xrightarrow{208} \text{TI} \xrightarrow{\beta}$$

- Search for $0v2\beta$ decay of ¹¹⁶Cd with advanced sensitivity: $\lim_{r \to 2} T_{1/2}^{0\nu} \sim 8 \times 10^{23} \text{ yr}$ (over 3 yr)
- Demonstration of ¹¹⁶Cd option capability for the large scale experiment (i.e., CUPID)
- Advantage of ¹¹⁶Cd is lower BG due to random CC of $2v2\beta$ decay $(T_{1/2}^{2v} = 2.69 \times 10^{19} \text{ yr})$

[1] A.S. Barabash et al., EPJC 76 (2016) 487

[2] C. Arnaboldi et al., Astropart. Phys. 34 (2010) 143.

3200

In addition to $0v2\beta$ of ^{116}Cd one could investigate some other rare processes using $CdWO_4$:

- Two neutrino 2β of 116 Cd can be studied with a very high accuracy (a good example is $2\nu2\beta$ of 100 Mo with Li_2^{100} MoO₄)
- 2β of 106 Cd, 108 Cd, 114 Cd, 180 W (resonant $0v2\epsilon$), 186 W
- α decay of ¹⁸⁰W
- Search for eka-tungsten [1]

[1] P Belli et al., Search for long-lived superheavy eka-tungsten with radiopure ZnWO4 crystal scintillator, Phys. Scr. 90 (2015) 085301

An example: β decay of ¹¹³Cd

• the axial vector coupling constant $g_{\rm A}$ is a crucial parameter to calculate nuclear matrix elements for neutrinoless double beta decay

• the calculated shape of the 113 Cd β spectrum is quite sensitive to the values of

[1] M. Haaranen, P. C. Srivastava, J. Suhonen, PRC 93 (2016) 034308

[2] P. Belli et al., PRC 76 (2007) 064603

Conclusions and Prospects

- 116 Cd is one of the most promising $0v2\beta$ candidates
- CdWO₄ scintillators: high energy resolution, radiopure, the production (including crystals from enriched cadmium) is well stablished
- CYGNUS low temperature 116 CdWO $_4$ experiment will investigate the $0v2\beta$ decay of 116 Cd with a sensitivity $\lim T_{1/2}^{0\nu} \sim 8 \times 10^{23}$ yr (over 3 yr), and set a basis for 116 Cd in CUPID