

French Task force for Phase 2 ATLAS Tracker construction

Future Contributions of LPNHE & LAL and IRFU

Giovanni Calderini – LPNHE, Paris Abdenour Lounis- LAL, Orsay

- Introduction to the ATLAS context
- Contributions to the development of the Inner Tracker system
- Future plans for ATLAS ITK construction
- Infrastructures to contribute as an ATLAS pixel production center
- Conclusions

Pixel sensors R&D groups (Almost 10 <u>AL:</u> <u>Aleanirs)- People involved</u>

Phd Students : T. Rashid+ Dmytro Hohov (Kiev)

Past contributions: C. Nellist (PostDoc), E. Gkougkousis (Plaboratoire L I N É A I R E A. Bassalat (PhD), M. Benoit (PhD), J. Idarraga (PostDoc), Vladimir Linhard (PostDoc)

For the Construction: D. Varouchas, L. Fayard, C.A. Bourdarios, R.Tanaka

LPNHE:

G. Calderini

M. Bomben, G. Marchiori, F. Cresoli,

PhD student : A. Ducourthial , J. Chauveau

Yourii Piadyk, Mykyta Haranko (Kiev)

ATLAS detector

- Huge multi-purpose detector; 46 m long; diameter 22 m; weight 7000 t
- Tracking system: 7 m long; diameter 2.3 m; 2 T field

ATLAS Tracker at LHC

- Large Hadron Collider
 in ~27km, E=14 TeV,
 L=10³⁴ cm⁻²s⁻ Beam-crossing: 40N
 - 1 GHz interaction rate, 10³ particles each 25 ns.

- Tracking detectors must fulfill the conditions:
 - Fast (40MHz), Rad-Hard (10-100kGy), high granularity & good pattern recognition capabilities (10³ tracks/25 ns).
- Environment is very radiation hostile: Accuracy and we should be able to measure tracks!
 - To measure momenta (\rightarrow dynamics, invariant masses)
 - To measure vertices
 - » Primary \rightarrow improve on p and E measurements
 - » Secondary → tag ps living particles (b,τ)→ markers of events with significant physics content
 - To help identifying photons

Bref summary of what has been acheived

Focus on the actual pixel system

	Detector:	Silicon area	Channels
		[m ²]	[10 ⁶]
	Pixel barrel	5.1	445
	Pixel end-cap	3.1	193
	Pixel total	8.2	638
	Strip barrel	122	47
	Strip end-cap	71	27
	Strip total	193	74
TRT R = 554 mm R = 514 mm R = 443 mm R = 443 mm R = 371 mm R = 299 mm Fixels R = 88.5 mm R = 50.5 mm R = 0 mm NEV	Table 6.6: Inner track	er active area and the second se	Existing B-layer

Past important contribut

- IN2P3 important contributions (2010-2015) for the Insertable B Layer project :
 - Sensors
 - Cooling
 - Mechanics
 - Integration

Work in Labs & manpower

(1 LAL-PhD student @CERN)

History of construction and operation

September 2010 Mid 2012

Insertable B-Layer

IBL

May 2014

May~ 2015

Preparation: ~2years Construction: ~2years Commissioning: ~1years

- IBL was proposed as the first detector upgrade activity in ATLAS experiment and was installed only in 4 years after TDR!
- Each part of the groups collaborates efficiently to finalize the construction in the limited time of 2 years.

One important issue at LHC: Extreme radiation levels !

Plots show radiation dose and fluence per high luminosity LHC year for

ATLAS (assuming 10⁷ s of collisions; source: ATL-Gen-2005-001)

Radiation dose [Gray/year]

"Uniform thermal neutron gas"

Put your cell phone into ATLAS ! It stops working after 1 s to 1 min.

Neutrons are everywhere and cannot easily be suppressed

Radiation-hard sensors

- 1. Radiation induced leakage current independent of impurities; every 7°C of temperature reduction halves current
 ⇔ cool sensors to ≈ -25°C (SCT = -7°C)
- 2. "type inversion" from n to p-bulk
 increased depletion voltage
 oxygenated silicon helps (for protons);

n+-in-n-bulk or n+-in-p-bulk helps

3. Charge trapping

the most dangerous effect at high fluences

- \Leftrightarrow collect electrons rather than holes
- ⇔ reduce drift distances

Alternatives for Planar pixel technology

Pixel Module Detection Unit

Intrinsic Module Detection device

- Hybrid pixel d
- The sensor and the relectronic are realized semiconductor substil
- Size of the electronic pixels is equal to the sensor pixels
- The connection betwee electronic and the sel via bump bond conne

R&D :Towards (n-in-p) Edgless Sensors for the future

ATLAS pixel detector uses n-in-n-sensors

- double sided processing (back side is structured)
- all sensor edges at ground
- most expensive part of the module
- Exploring n-in-p sensors as alternative
- Studies show radiation hardness (LAL&LPNHE Member of RD50 coll.)
- single sided process ~ price benefit of factor 2-3

- Develop Active Edge Technology

• Absence of guard rings on back side lead to risk of (destructive) sparking to the ROC

LPNHE & LAL: Active contributions within ATLAS Pixel R&D

Tasks to improve the Planar Pixel Silicon detector for the ATLAS upgrade

<u>Goals</u>

- Performance : evaluate & improve sensor design for radiation tolerance up to 3x10¹⁵n_{eq}/cm² fluence.
- Productions : work on various wafer productions (Cis, VTT Advacam & FBK)
 Biasing Structure
 Bumphanding

Edgless & Slim edge Pixels for Phase 2

4" 200 µm thick n-on-p Active Edge technology Pixel-to-edge down to 100 µm Tested extensively on beam

> NIM A 712 (2013) 41-47 NIM A 730 (2013) 215

JINST 12 P05006 (2017)

6" 100-130 µm thick n-on-p INFN ATLAS/CMS project Tested extensively on beam, after irradiation too

12th Trento Workshop

6" 100 130 μm thick n-on-p INFN ATLAS/CMS project Active Edge technology Pixel-to-edge down to 50 µm RD53 compatible sensors Samples at IZM for b.b-ing

RD

Hit-efficiency at the edge

- Hit-efficiency above 90% up to 40 μm away from the last pixel
- \bullet No good tracks beyond -50 μm due to quality cuts

Efficiencies from beam tests

Analysis from Dmytro Hohov ATLAS@LAL

Irradiated pixel behavior at high fluen Beam-tests results

Future plans for ATLAS ITK construction

Roadmap for ATLAS phase 2

Challenges for a new inner tracker

But !

- Same or better performance required !
 - Use quite "transparent tracker" Low X0
 - Provide V. High granularity sensors
 - Go du deep submicron technologies
 - Raise the transfer data band-with (5Gps)

High Luminosity LHC conditions will affect Drastically the current design

- Peak Luminosity will increase by a factor 5-7 10**34
- Average Pileup : a factor of 8 <m>~200
- Integrated luminosity : a factor 10 : 3000
- Radiation hardness : a factor 20 : 2x10 n_e

Expected fluences (1 MeV n_{ea}.cm⁻²)

1 MeV n og fluence [particles / cm 2]

ATLAS ITk Simulation, FLUKA to 3,000 fb⁻¹

ur

Production planning of the next Pixel Tracker : Planning 2017-2025

Estimation in terms of module construction

3264 FF

5472 FE

6144 FE

7680 FE

22560 FE

Rings

Layer 0

Layer 1

Layer 2

Layer 3

Total

Fully	inclined	(Front-end)

 Layer 0
 936 FE

 Layer 1
 2016 FE

 Layer 2
 3200 FE

Layer 3 4752 FE Layer 4 6264 FE

Layer 46264 FETotal17168 FE

Supposing single chip for layer 0 double chip module Layer 1 Quads for Layers 3 et 4 Total Modules including rings ~ 12.000 Modules

Major investment of IN2P3 for ITK LAL-IN2P3-CPPM-LPSCG-LAPP

Contribution (LAL+ LPNHE)~ ~1000-2000 Modules

Quad FEI4 Module prototype

Infrastructures to contribute as an ATLAS production center

Clean room (LAL, LPNHE, CEA-IRFU)

Modern and state of the art for Pixel development: Captinnov plateform

- High precision technology equipment for silicon devices characaterization & low noise electronics front end readout
- Machine semi-automatic for probing devices
- Integrated Fraday Cage for low current detection
- Performances in terms of low courants (0.1 fA) et capacités (A.Farads)
- Machine completely programmable

Possibilité of probe card inser (Test multi-variables)

Semi automatic Karl Suss prober

Cosmic and source for Pixel module testing

Construction of a Laser testbench

Scan des pixels, dead pixel detection, cross talk.

device

Mechanics for inclined pixel position

0 0 00

ΠT

9779

Laser holder

23 (7) (3)

Improvement of Laser testbench for pixel module Characterization (PhD project- D. Hohov)

Captinnov Infrastructure

14 1000 H

Probe station

Man at Work

CAPTINNOV Clean Room

Pixel Matrix

Conclusions

Comments & conclusions

- An IN2P3 task force has been set to gather their efforts to contribute in a significant way to the construction of the new tracker for ATLAS phase 2
- The ATLAS Phase 2 project is highly challenging requiring high level of technical expertise, for mastering precision silicon detectors, low noise electronics and many other aspects (mechanics, cooling, metrology...)
- LPNHE and LAL are key players in ATLAS project since a long time, in various fields from Technology Computed Aided simulation, pixel sensor design, high precision low noise silicon characterization, to module assembly
- Important technical infrastructures and skills have been accumulated
- it offers an excellent opportunity for students to embark in one of the most attractive project for students and young scientist so Welcome!!

Improving efficiency: biasing solutions

Aim is to find a solution that reduces the inefficiencies in the biasing region within the pixel cell.

- CiS FE-I4 planar sensor, with four bias rail designs on the same sensor.
- Both show increased noise for one design

Test beams:

- A sample was tested in the CERN SPS test beam in July 2015.
 - Reconstruction and data analysis performed at LAL.
 - This device will be irradiated and tested in a future test beam.

Testbeam: LAL & LPNHE joint activity

The FBK/LPNHE Active Edge pixel 1 production

M. Bomben et al. Nucl. Instrum. Meth. A 712 (2013) 41

Temporary metal at FBK

Technical solution allowing to remove the metal grid used to bias pixels during tests. After the metal removal, no inefficiency left due to bias network

DESY March testbeam

- The sample: LPNHE5, featuring 100 µm pixel-to-trench distance and no GRs
 - 2 samples more available; not enough time to measure them

• Several configurations tested

• Results – next slides

Testbeam: LAL & LPNHE joint activity

CONCLUSIONS AND OUTLOOK

Comments & Conclusions

• The HL-LHC phase preparation is moving forward

 The new tracker demands new (pixel) readout chip, cooling, mechanics, trigger, and sensors

- The ATLAS IN2P3 R&D groups are involved in many of these activities playing a leading role in most of them
- The LAL and LPNHE are important actors in this field thanks to new pixel productions, simulation studies, modules assembly, characterization and measurement

BACKUP

Tracker sensor design requirements

Breakdown voltage performance

Depletion Voltage: 20 V

Large breakdown voltage values already with 100 µm pixel-to-edge distance!

Testing the the performances at the borders to increase the overall surface efficiency

Performances of pixels planaires under High energy Pions

In-pixel efficiency

effect due to charge sharing at the pixel's corners