

ISMA R&D scintillation detectors for high energy physics projects and medical application

A. Boyarintsev

Institute for Scintillation Materials, Kharkov, Ukraine

- 1. History and development reasons
- 2. Problems and solutions
- 3. Light collection as the part of technology
- 4. Scintillation detectors for HEP of development
- 5. Scintillation detectors for medical application
- 6. Conclusion

Historical current needs

Single crystalline scintillator is probably the best but the most complex and expensive decisions Non growth technology as an alternative:

- 50th start of both option and ...era of growth domination
- 70th ceramics as alternative to the growth
- 2015 return to composites as an efficient and cheap solution

1950's - composite

United States Patent Office

2,740,050

PHOSPHOR SCREEN AND METHOD OF MAKING THE SAME

Warner W. Schultz, Schenectady, N. Y., assignor to General Electric Company, a corporation of New York

Application March 15, 1952, Serial No. 276,795

8 Claims. (Cl. 250-80)

1970's - ceramics

Mat. Res. Bull. Vol. 7, pp. 647-654, <u>1972.</u> TRANSPARENT Gd₂O₃ CERAMICS AND PHOSPHORS

Edward Carnall and Donald Pearlman

FIG. 3 Hot pressed Gd₂O₃(Eu³⁺), 25.4 mm dia. x 1.5 mm thick.

2010's - again to composite

United States Patent

Patent No.: US 8,633,449 B2 Date of Patent: Jan. 21, 2014

SCINTILLATOR INCLUDING A SCINTILLATOR PARTICULATE AND A POLYMER MATRIX

Inventor: Peter R. Menge, Novelty, OH (US)

Assignee: Saint-Gobain Ceramics & Plastics, Inc., Worcester, MA (US)

Renaissance of composite technology – the dream or reality?

OUTLINE

1. History and development reasons

2. Problems and solutions

3. Light collection as the part of technology

- 4. Scintillation detectors for HEP of development
- 5. Scintillation detectors for medical application
- 6. Conclusion

Composites - what is it?

<u>Composite scintillator</u> – small scintillator particles/granules embedded to immersion gel

<u>Driving force</u> for development is the search of cost efficient solution for many detector designs. There are no any application claiming for lower price!

Composites - what is attractive?

Technical and technology advantages:

- Use of synthesized scintillation powders
- Variable thickness (from 50 micron)
- High spatial resolution
- ✓ High uniformity
- Large area any complex shapes
- Commercially available components
- Ready to visualization

Initial problems:

- ✓ Low transparent media, light scattering
- ✓ Customized design for each customer
- \checkmark Simulation and optimization for each design
- ✓ Particles analysis and presize synthesis
- \checkmark Light guide output solution for thick detector

Composite technology is multidisciplinary process

Composites - scintillators for customer requirements

Scintillation powder fabrication

✓ Regular shape
✓ Control of particles size
✓ Ultrafine and fine powders (1-5000 nm)

GOS:Pr,Ce

GAGG:Ce

✓ Additional milling is required

✓ Non uniformity size form 10s of nm

Scintillation powder is the main problem for technology

OUTLINE

- **1. History and development reasons**
- 2. Problems and solutions

3. Light collection as the part of technology

- 4. Scintillation detectors for HEP of development
- **5. Scintillation detectors for medical application**
- 6. Conclusion

Light collection in composites

Granule size selection

Light scattering in heterogeneous system

Granule size	Light attenuation		
< 30 nm	Granule size significantly less than	Weak emission	
Nanoparticles	scintillation wavelength		
~ 100-200 nm	Granule size less than emission wavelength	Rayleigh scattering	
300-800 nm	Granule size is comparable with emission wavelength	Mie scattering	
> 1000 nm	Large crystal		

Light collection in composites

Base requirements for composites

- ✓ Refractive index
- ✓ Granule shape
- ✓ Granule size
- Concentration and distribution uniformity

Monte Carlo simulation should cover at least:

A. Light passage in imaginary cell

B. Simulation of light transport

$$\tau(L) = \frac{j(L)}{S} = \frac{\frac{\beta_1 \beta_2}{\chi} sh\chi L + \beta_2 ch\chi L}{(\chi + \frac{\beta_1 \beta_2}{\chi})sh\chi l + (\beta_1 + \beta_2)ch\chi l}$$

C. Regular shape

Irregular shape

Light collection simulation

Composites application

OUTLINE

1. History and development reasons

- 2. Problems and solutions
- **3. Light collection as the part of technology**

4. Scintillation detectors for HEP of development

- **5. Scintillation detectors for medical application**
- 6. Conclusion

Composite scintillators application for HEP

2 XL scintillator Shashlyk " design Green with the second secon

	Scintillation plastic	Scintillation crystal	Composite scintillators
radiation resistance	up to 5 Mrad	Yes	Yes
cover large area	Yes	Νο	Yes
cost- efficiency	Yes	Νο	Yes

Composite scintillator is the alternative to the scintillation plastic but possesses with higher radiation resistance comparable with inorganic crystals

Ways of improvement of radiation hardness plastic scintillators

0.8

0.6

0.4

0.2

0

Ó

B/B0

Transmission spectra of undoped polystyrene before and after irradiation with 10 MRad dose (A.D.Bross, A.Pla-Dalmau)

Irradiation induced decrease of light yield in plastic scintillator

Dose, Mrad

3

2

Radiation hardness may be improved by:

- shifting of luminescence maximum of plastic scintillator into long-wave region
- increasing of radicals mobility without changes in mechanical properties of plastic scintillator

O UPS-98RHA □ SCSN-81

∆ UPS-98GC

5

Improvement of radiation hardness via increasing of radicals mobility

Doping of plastic scintillator polymer base with diffusion amplifier may result in increase of radiation hardness

Light yield dependence of plastic scintillator on polyphenyl oxide concentration (diffusion amplifier in polysterene) under irradiation with 2.8 MRad dose Introducing of diffusion amplifiers levels dependence of traps formation rate on irradiation dose rate,

but

disimprove the mechanical properties of plastic scintillator

"Cross-linking" of polymer base is the way to improve the properties of radiation hardness plastic scintillator

Improvement of radiation hardness plastic scintillators

- Shifting of luminescence maximum into the region of transparency
- Introducing of diffusion amplifiers into cross-linked polymer backbone

Increase of radiation hardness threshold up to 10 MRad

ID	Light yield, % (rel.)		D1/2,
scint.	0 Mrad	5 Mrad	MRad
1	80	49	7.0
2	55	48	11.4
3	59.5	41	9.3

P. Zhmurin, ISMA

Radiation hardness of organic vs inorganic scintillators

Single crystal and composites

Polysterene

Radiation hardness more 100 MRad

Radiation hardness up to 5 MRad

Radiation hardness of oxide based composites is in 20 times higher than scintillation plastic!

Scintillation detectors

Composite elements for various loading doses

Radiation hardness of polysiloxanes

Irradiation with electrons (E₀ = 8.3 MeV) up to 300 MRad dose

Irradiation with protons (150 KeV)

Figure 2 Change in surface morphology of samples with increasing proton fluence: (a) 0 cm^{-2} , (b) $5 \times 10^{14} \text{ cm}^{-2}$, (c) $1 \times 10^{15} \text{ cm}^{-2}$, Haiying Xiao et al., Journal of Applied Polymer Science, $\cdot 2008$

- Loss of transparency is the result of microcracks appearance
- Appearance of microcracks is due to:
 - leaving of the methyl groups
 - formation of an inorganic, silica-like final product, which consists of SiO_x

The possible way to increase of radiation resistance is hardening of polysiloxane matrix with scintillation granules

YAGG:Ce as a material for WLS fiber

Decay time Composite Scintillator with YAGG:Ce fiber before and after irradiation with dose of 50 MRad

Decay time, Composite Scintillator element with YAGG:Ce fiber , 22ns

Radiation hardness is more than 100 MRad 21

Light collection in scintillation layer

WLS fiber – YAG:Ce

Testing scheme

Nonuniformity of composite scintillator

I	Counts rate, %	
L, mm	Diffuse refl	Mirror refl
5	100%	100%
10	101%	102%
15	101.5%	104%
20	98%	103.5%
25	90%	101%
30	81%	96%
35	73%	91.5%
40	65%	86%
45	59%	81%
50	53%	75.5%
55	51%	72%
60	50%	70%
65	48%	69.5%
70	46.5%	67%
75	46.5%	67%
80	49%	71%
85	55.7%	75%
90	65%	81%

Nonuniformity is up to 15% for composite scintillator of 40 mm width

Optical light guide selection

Quartz glass and silicone are transparent in the range λ>400 nm for doses up to 100 Mrad

Sapphire is transparent in the range λ>350 nm for doses more than 100Mrad

<u>Molding silicone</u> for optical light guide

Scintillation type	Optical light guide	Relative light output
Plastic	-	100%
YSO:Ce composite	Silicone	250%
YSO:Ce composite	Quartz	120%
YSO:Ce composite	Sapphire	50%

We have different materials for composite detectors and we propose optical materials with the best radiation hardness

Development of thin-layer detectors for HEP

Composite detector

Requirements

- ✓ Super granularity
- ✓ Radiation hardness
- ✓ Decay time not more 20 ns

Available now

- ✓ Decay time 10-20 ns
- ✓ LO comparable with polysterene
- ✓ Radiation hardness >100 MRad
- ✓ Radiation hard WLS and opto fiber in complect
- Cherenkov and scintillation signal simultaneous registration

"Warm" version of calorimeter is possible

Possible designes for "warm" calorimeter

 ✓ Technology of powder synthesis, ceramics, melting
✓ Crystal WLS fiber growth

Position sensitivity design – coincidence counting

Development of thin-layer detectors for HEP

Future HEP projects

Semiconductor detector is main applicant to HL LHC and new project upgrade today

Future Circular Collider Circumference: 80-100 km Energy: 100 TeV (pp) >350 GeV (e*e*)

Large Hadron Collider Circumference: 27 km Energy: 14 TeV (pp) 209 GeV (e⁺e⁻)

Tevatron (closed) Circumference: 6.2 km Energy: 2 TeV

Future detector – super granularity design

Composites implementation . What we can offer?

OUTLINE

- **1**. History and development reasons
- **2. Problems and solutions**
- **3. Light collection as the part of technology**
- **4. Scintillation detectors for HEP of development**
- 5. Scintillation detectors for medical application
- 6. Conclusion

Flexible scintillators for photodetector and CMOS application

Graine size, microns	Thikness, mm	Ligh yield flexible VS crystal	
Up to 40	0,1-0,3	30	
40-120	0,3-0,5	55	
120-200	0,5-1,5	80	

Position sensitive flexible scintillators without pixelation

Light output of composite scintillators

Pixel detectors VS flat panel

Transparent flexible scintillators

Experimental data

Ways to increase of transparency

- ✓ Granule size
- ✓ Granule shape
- Micro light guides and micropixel technology on photoresist base

Medical application

Advantage of flexible detector

- High position sensitivity
- Takes a form of organ or tissue under study
- ✓ Good spatial resolution
- High uniformity
- ✓ Good performance
- Easy production in a variety of shapes

Transition from flat detectors to flexible ones

- 1. There are many materials on the market meeting the main customer requirements on physical parameters.
- 2. Searching for materials meeting economical and technological requirements is the problem of current interest.
- 3. Last decade technologies for obtaining radiation detectors alternative to scintillation crystals have been actively developing.
- 4. Creation of multicomponent scintillation systems is the way for obtaining of cost efficiency detectors.

Thank you!