Proton charge radius with the ISR experiment

Sören Schlimme

A1 Collaboration Institute for Nuclear Physics Johannes Gutenberg University Mainz

French-Ukrainian Workshop on the instrumentation developments for high energy physics

Nov. 6-8, 2017, LAL, Orsay, France

Sören Schlimme (Mainz University)

Proton Charge Radius: The ISR Experiment

- elastic ep scattering
- proton radius
- ISR method
 - experiment
- outlook

2017-11-07 1/40

Elastic ep -scattering

cross section for elastic ep scattering:

$$\begin{pmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_e} \end{pmatrix} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_e} \right)_{\mathrm{Mott}} \cdot \frac{1}{(1+\tau)} \left[G_{\mathrm{E}}^2(Q^2) + \frac{\tau}{\epsilon} G_{\mathrm{M}}^2(Q^2) \right]$$
$$G_{\mathrm{E}}^2(Q^2) \leftrightarrow \text{ charge distribution}$$
$$G_{\mathrm{M}}^2(Q^2) \leftrightarrow \text{ magnetization distribution}$$

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

Elastic ep -scattering

cross section for elastic ep scattering:

$$\begin{pmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_e} \end{pmatrix} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_e} \right)_{\mathrm{Mott}} \cdot \frac{1}{(1+\tau)} \left[G_{\mathrm{E}}^2(Q^2) + \frac{\tau}{\epsilon} G_{\mathrm{M}}^2(Q^2) \right]$$
$$G_{\mathrm{E}}^2(Q^2) \leftrightarrow \text{ charge distribution}$$
$$G_{\mathrm{M}}^2(Q^2) \leftrightarrow \text{ magnetization distribution}$$

Elastic ep -scattering

cross section for elastic ep scattering:

$$\begin{pmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_e} \end{pmatrix} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_e} \right)_{\mathrm{Mott}} \cdot \frac{1}{(1+\tau)} \left[G_{\mathrm{E}}^2(Q^2) + \frac{\tau}{\epsilon} G_{\mathrm{M}}^2(Q^2) \right]$$
$$G_{\mathrm{E}}^2(Q^2) \leftrightarrow \text{ charge distribution}$$
$$G_{\mathrm{M}}^2(Q^2) \leftrightarrow \text{ magnetization distribution}$$

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

The proton radius puzzle

The proton radius puzzle

The proton radius puzzle

• The 6σ discrepancy in the r_p measurements.

Proton's charge form factor

- Data available only for $Q^2 > 0.004 \,\,({
 m GeV}/{\it c})^2$.
- Extrapolations to zero are needed!

$$ig\langle r_E^2 ig
angle = -6 \hbar^2 \left. rac{\mathrm{d} G_\mathrm{E}}{\mathrm{d} Q^2}
ight|_{Q^2=0}$$

Initial State Radiation

Initial State Radiation

'elastic' Q²

Exploit information in radiative tail

• ISR:

photon radiation takes energy out of electron \rightarrow access to lower Q^2 at given scattering angle

- Sophisticated simulation needed (FSR, ...)
- Allows investigating $G_{\rm E}$ at Q^2 down to 10⁻⁴ GeV²

Kinematic settings

- Multiple beam energies: elastic results vs. ISR results
- Limited momentum acceptance: multiple settings
- Overlapping settings to control systematic uncertainty
- Performed at MAMI in 2013

Mainz Microtron (MAMI) - Electron Accelerator

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

2017 - 11 - 07 12/40

Mainz Microtron (MAMI) - Electron Accelerator

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

MAMI

The A1 setup

High resolution magnetic spectrometers

spectrometer A

spectrometer **B**

spectrometer C

Liquid hydrogen target

Kaos

IVW

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

2017-11-07 14/40

The ISR experiment

The ISR experiment

Results

Comparison data vs. simulation

- Simulation performed with Bernauer parametrization of form factors
- A percent agreement demonstrates that radiative corrections are well understood, even 200 MeV away from elastic peak!
- Existing apparatus limited reach of ISR experiment to $E' \sim 130$ MeV
- Assuming flawless description of radiative corrections, form factors can be extracted from the data

M. Mihovilovic et al., Phys. Lett. B 771 (2017) 194

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

2017-11-07 17/40

Results: ISR form factor, radius

M. Mihovilovic et al., Phys. Lett. B 771 (2017) 194

First measurement of $G_{\rm E}$ down to $Q^2=0.001~{
m GeV^2}$

Results: ISR form factor, radius

M. Mihovilovic et al., Phys. Lett. B 771 (2017) 194

First measurement of $G_{\rm E}$ down to $Q^2 = 0.001~{
m GeV^2}$

 $r_{\rm E} = (0.836 \pm 0.017_{\rm stat.} \pm 0.057_{\rm syst.} \pm 0.003_{\rm mod.}) \text{ fm}$

The ISR proton radius

• Only ISR data considered in result.

The bitter truth

ISR - MVP

ISR - Mastermind

NOT EXACTLY THE DESIRED

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

2017-11-07 21/40

IMPROVE?

Limitations ISR (2013)

• Entrance flange contributions

- Spec. B encompasses a long entrance flange.
- Events rescattered from the snout cover the whole vertex acceptance.
- spoils low E' data \rightarrow **low** Q^2 **data killer**

Limitations ISR (2013)

• Entrance flange contributions

Replace by Helium-"balloon" $(X_0^{\text{He}}=570 \text{km})$ + foils

Limitations ISR (2013)

• Entrance flange contributions

- Spec. B encompasses a long entrance flange.
- Events rescattered from the snout cover the whole vertex acceptance.
- spoils low E' data \rightarrow **low** Q^2 **data killer**
- Target cell contributions

- Background from target foils
 - empty cell measurements
- spectra distorted by (thin) ice layer
- rescattering on thick frame
- hard analysis cuts
 - \rightarrow introduces systematic errors
 - \rightarrow limits statistics

MESA - planned ERL next to MAMI

Sören Schlimme (Mainz University)

Proton Charge Radius: The ISR Experiment

2017-11-07 25/40

MESA - planned ERL next to MAMI

Sören Schlimme (Mainz University)

Proton Charge Radius: The ISR Experiment

2017-11-07 26/40

ISR with a Cluster-Jet Target?

- Target developed for MAGIX, but could be used also in A1.
- No metal frame near the vertex.
- No target walls.
- Width of the jet: 2mm (point-like target)
- Density of 10⁻⁴ g/cm³ at 15 bar.
- Luminosity of 10³⁴/(cm²s) can be achieved at MAMI.

ISR with a Cluster-Jet Target?

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

2017-11-07 28/40

ISR with a Cluster-Jet Target!

Sören Schlimme (Mainz University)

Proton Charge Radius: The ISR Experiment

2017-11-07 29/40

ISR with a Cluster-Jet Target!

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

1st commissioning beam time, Sept. 2017

1^{st} commissioning beam time, Sept. 2017

Gas Jet

Achievements

- successful target installation
- Nozzel jet profile measured with rastered electron beam
 - jet density as expected
- Catcher measurement of several *elastic* settings

Technical problems

- pressure in scattering chamber
 - too high for turbo pump
 - foil at chamber entrance
 - beam straggling
- distance nozzle-catcher too small
 - significant background
- system not perfectly tight
 - nozzle freezing
 - gas recirculation not applicable

ISR with a Cluster-Jet Target

Optimistic! Beam time in two weeks..

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

Summary

MAMI

- A pilot experiment has been performed at MAMI to measure G^p_E at very low Q².
- A new technique for FF determination based on ISR has been successfully validated.

Elastic peak

d stage turbomolecular pump

34/40

Radiative

tai

2017 - 11 - 07

- Reach of the first ISR experiment limited by unforeseen backgrounds.
- The available jet target opens possibility for reaching the ultimate goal of measuring form factors down to 10⁻⁴ GeV², thus improving proton charge radius determination.

Sören Schlimme (Mainz University)

Proton Charge Radius: The ISR Experiment

Proton form factors

Form factor determination

- measure elastic spectrum
- subtract background
- compare to simulation (3)
- fit cross sections using
- appropriate form factor model(s)

e

 $^{1}\mathrm{H}$

e'

(5) (determine radius from slope)

Extend Q^2 range

- large Q^2 : similar measurements, higher beam energies
- smaller Q^2 : novel technique: ISR

 \boldsymbol{e}

Sören Schlimme (Mainz University)

2017-11-07 36/40

100

120

140

-585 M

(d) 450 Me

(e) 315 Me³

Initial State Radiation

NLO virtual and real corrections included via effective corrections to cross-section

Sören Schlimme (Mainz University) Proton Charge Radius: The ISR Experiment

Kinematic settings

• Overlapping settings to control systematic uncertainty.

Uncertainties

Total systematic uncertainty of cross-section \leq 1.0 %

$\mathbf{ISR}\ \mathbf{2013} \to \mathbf{ISR}\ \mathbf{2017}$

Benefits Jet-Target

- no background
 - Havar foil
 - cryogenic depositions
 - target frame (!?)
- small effects
 - external radiation
 - multiple scattering
 - ionization loss
- no extended target issues

Challenges

- fail-safe beam pos. stability
- luminosity determination / monitoring
- drastically reduced target thickness

 $\frac{70 \,\mathrm{mg/cm^3}}{0.1 \,\mathrm{mg/cm^3}} \cdot \frac{50 \,\mathrm{mm}}{2 \,\mathrm{mm}} = 17500$

