ProRad

An electron-proton scattering experiment

Mostafa HOBALLAH on behalf of the ProRad collaboration

hoballah@ipno.in2p3.fr

Institut de Physique Nucléaire d'Orsay, CNRS/IN2P3, Universités Paris-Sud & Paris-Saclay

The George Washington University Washington, USA

GSI & J.W . Goethe Universität Frankfurt, Germany

Institut de Physique Nucléaire d'Orsay Orsay, France Laboratoire de l'Accélérateur Linéaire Orsay, France Laboratoire de Physique Corpusculaire Caen, France

- Physical motivations
- The ProRad experiment
- · Summary

The proton radius puzzle

The proton looked smaller to muons than it did to electrons

The measurement of the 2S-4P transition frequency in ordinary hydrogen

$$r_p = 0.8335 \pm 0.0095 \text{ fm}$$

Beyer, A. et al. Science 358, 79-85 (2017).

3.3 σ smaller than the previous electron world data and consistent with muonic hydrogen A proton radius puzzle for ordinary hydrogen all by itself!

The proton charge radius from hydrogen spectroscopy

Measure the transition frequency between two energy levels

Direct measurement of the proton radius

Muonic hydrogen is ~200 times smaller than ordinary hydrogen

Proton radius from muonic hydrogen is 10 times more precise than in ordinary hydrogen

The proton charge radius from electron-proton scattering experiments

Measurement of the e-p scattering cross section

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega}\Big|_{Mott} \times \left(\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau \tan^2\left(\frac{\theta}{2}\right) G_M^2(Q^2)\right)$$

$$r_p = \sqrt{\langle r^2 \rangle} = \sqrt{-6 \frac{\partial G_E^2(Q^2)}{\partial Q^2}} \Big|_{Q^2 = 0}$$

Indirect measurement of the proton charge radius through extrapolation of the form factor to zero momentum transfer

Current experimental data are in a region that is not linear in Q² extrapolation is inexact

Need for low Q² experimental data that is in a region where extrapolation is linear

ProRad@PRAE: a never-before explored domain in momentum transfer

Elastic electron proton scattering at ProRad (Proton Radius):

- Incident electron energies varying between 30-70 MeV
- Angular range of (6°-15°) for scattered electron
- Precise measurement of the electric form factor $G_E(Q^2)$ in the momentum transfer range of 10^{-5} - 10^{-4} (GeV/c)²

A linear region in $G_E(Q^2)$:

'Exact extrapolation'

Foreseen results:

- A better knowledge of the dependence of G_F on Q²
- A significant impact on the measurement of the proton charge radius

Experimental requirements * îledeFrance Beam energy compression Beam energy measurement ProRad/Radiobiology/Instrumentation Accelerator:

The Platform of Research and Applications with Electrons at Orsay, France: a multidisciplinary site based on the high-performance electron beam with energy range 30 MeV - 140 MeV

Instrumentation

2-phase implementation

- Radiobiology
- Precision measurements: Proton Radius (ProRad) measurement

Experimental requirements

A high precision measurement of the proton electric form factor

ProRad experiment requirements:

- High precision beam
- Precise knowledge of the beam energy
- A stable target
- Optimised measurement of the scattered electron energy and position

Beam energy compression system

High precision measurement: advanced equipment to control and measure the beam energy

Required beam characteristics

- Reduced energy dispersion (5x10-4)
- Precise knowledge of the **energy** (5x10-4)

A chicane of 4 identical dipoles to reduce the phase space of the beam

- ➤ The association of a RF cavity to the chicane helps to reduce by a factor ~10 the dispersion in momentum (technique used at Mainz, Glasgow, Bates...).
- ➤ Alternative solution is to add a **passive structure** based on magnetic field created by the beam flow in tubes (**wakefield**). The form of this structure is essential to generate the field necessary to compress the beam to a dispersion of 5x10⁻⁴.

Beam energy measurement

The **precise knowledge** of the beam energy value is crucial to obtain a sub-percent uncertainty on $G_E(Q^2)$

Deviate the beam in a controlled magnetic field: an absolute knowledge of the beam energy

$$E = \frac{c}{\theta} \int B \ dl = \frac{c \ I_B}{\theta}$$

$$\frac{\delta I_B}{I_B} = \frac{\delta \theta}{\theta} = 2 \times 10^{-4}$$

$$\delta E/E = 3 \times 10^{-4}$$

- ❖ Beam Position Monitors to measure θ
- A control magnet connected serially with the dipole magnet insures a precise measurement of the field integral
- A YAG screen to measure the energy dispersion of the beam

The Hydrogen target

R.A. Costa Fraga et al. RSI 83 (2012) 025102

Nd:YAG
Laser
Control Targets
Ladder

Nozzle
Assembly

Micrometer
Table

Requirements:

A very stable windowless and self-replenishing target of 15 μ m diameter

Windowless target: reduced background Thin target: precise knowledge of interaction vertex

Ultra cold liquid technology developed at Frankfurt University

The experimental setup: a full view

Reaction chamber with the target assembly

Vacuum vessel featuring the **elementary detectors** placed on a spherical endcap

Each elementary detector made of

- 2 planes of scintillating fibres
- A cylindrical BGO crystal (π2.5²x15 cm³)

32 elementary detectors placed at 5 different scattering angles at a distance of 1.5 m from the target

The experimental setup: a zoom in

At (6°): steel tubes (1 m) as a collimator of 1 cm diameter

 Maintain a reasonable counting rate at low angles to avoid event pile-up

Elementary detector:

• Measure the position with 2 superposed planes of scintillating fibres and determine the scattering angle

Measure the energy with a BGO crystal

Vacuum

Position measurement concept

✓ Position detector made of 2 interleaved planes of scintillating fibres of 1x1 mm² read by SiPMs.

$$\left(\frac{\delta G_E^2}{G_E^2}\right)^2 \sim \left(\frac{\delta \sigma_{Exp.}}{\sigma_{Exp.}}\right)^2 + 4 \left(\frac{\delta E}{E}\right)^2 + 16 \left(\frac{\delta \theta}{\theta}\right)^2$$

- **This configuration provides a precision of 0.35 mrad on the scattering angle** θ
- Two different geometries (12x12 mm² et 40x20 mm²) at small & large angles to compensate the variation of the cross section

Energy Measurement

R&D started on crystals

Energy measurement is done with a BGO crystal read out by a PMT

Both Moeller & elastic scattered electrons are detected: elastic cross section is normalised to the Moeller one to reduce systematics

✓ At the same scattering angle, the difference between the energies of elastic and Moeller scattered electrons is a key element to identify each process

- At low angles, the elastic and Moeller spectrums overlap but can still be separated
- At high angles the separation is more clear

Crystals tests

We are testing two BGO Crystals from different manufacturers (Alpha Spectra & Saint-Gobain)

Compare the resolution of the two crystals

Alpha Spectra crystal has a better resolution

We are also comparing two PMTs from Hamamatsu: R1306 (8 stage) and R2154-02 (10 stage)

Ongoing: Preparing for test with electron beam at ALTO (50 MeV electrons, real case test)

- ProRad will contribute significantly to the proton radius puzzle
- Detector conception is in a very elaborated phase
- Data taking is foreseen in second half 2020
- Precision on all aspects is a key point for ProRad to reach its goals

