

Development of the Fast and Efficient Gamma Detector Using Cherenkov Light for TOF-PET

C. Canot

CEA Saclay, IRFU, France CaLIPSO group 7th November 2017, French-Ukrainian Workshop, LAL

- Functional 3-D imaging technique in nuclear medicine
 - Oncology : small tumors and metastases imaging
 - Neurology : exams of neurodegenerative diseases (Alzheimer, Parkinson)
- Principle :
 - Radioactive tracer (ex : FDG) is injected in the patient body and then chemically bounded in tissue

 - Annihilation with an electron of tissue : two 511 keV γ are emitted back-to-back
 - Detection in coincidence
 - Image reconstruction
 - Important characteristics of PET detector
 > Efficiency
 - Time resolution

Spatial resolution

Provides information on the localisation of the annihilation vertex on the Line-Of-Response (LOR).

Goal : achieve time resolution of 100 ps (FWHM) → localisation of 3 cm on the LOR

- \rightarrow Incalisation of the image signal to make
- → Improvement of the image **signal-to-noise ratio**

$$gain = \sqrt{\frac{2 \cdot D}{c \cdot \delta t}}$$

For example, With * D = 20 cm (organ size) * $\delta t = 100$ ps, gain in constrast is 3.6

07/11/2017

Improvement of **the signal-to-noise ratio** :

 \rightarrow reducing of the radiation dose received by the patient while keeping the same image quality,

 \rightarrow or, alternatively, improvement of the image quality without increasing the received dose.

Current PET-scan uses scintillation ~ 10 to 50 ns To improve the TOF : using of Cherenkov radiation fast :~ 10 ps but low yield

→ development of 2 twin projects : **CaLIPSO** and **PECHE**

→ Construct a Cherenkov detector with high detection efficiency and time resolution

- → Preamplifiers 2.5 GHz bandwidth, 30 dB, ZKL-2R5+
- → SAMPIC module : Time and Waveform Digital Converter (TWDC) chip 07/11/2017 French-Ukrainian Workshop - C. Canot

MCP-PMT Photonis *XP85012 Planacon*

* Low Dark Count Rate

- $\simeq 100 \text{ Hz/cm}^2$
- * Fast :
 - TTS $\lesssim 100$ ps (FWHM)
- * Good quantum efficiency up to 25 %
- * Active surface 53 mm x 53 mm* Windows material : sapphire
- * 8 x 8 anodes
- * 25 μ m pore diameter

The SAMPIC module

Signals numerisation with the **SAMPIC** module:

A 32-channel, 10-GSPS Time and Waveform Digital Converter module, developped by IRFU and LAL.

* provides digitized waveform with 64 samples, 1.6 GS/s to 10 GS/s

* extremely good resolution in time :
< 5 ps (σ)

* allows to use on-line the configurable Constant Fraction Discriminator (CFD) algorithms

* acquisition of waveform and/or CFD time

→ A 511 keV gamma enters the crystal, what probability do I have to detect it ?

- * gamma-conversion efficiency : 67 % for 10 mm crystal
- * photoelectric conversion in PbF_2 : 46 %
- * optical coupling from crystal to PMT

* quantum efficiency of photocathode : up to 25 %

Efficiency Measurement Setup

→ Measured with reference YAP detector with « Tag & Probe » method

In order to know when a 511 keV gamma entered on the detector → selection of the 511 keV events in the YAP → look at the coincidence events in the PbF₂

$$Eff = \frac{N (PbF_2)}{N_{YAP} (E > E_1, E < E_2)}$$

Eff ~ 28 % (preliminary)

Systematic effects taken into account :

overestimation of the $\rm N_{_{YAP}}$, due to the presence of Compton scattering from 1.3 MeV Compton

07/11/2017

DE LA RECHERCHE À L'INDUSTRI

Detector Time Resolution Optical Dispersion only

Simulation of intrinsic dispersion of the optical paths in the crystal

For a single detector : **FWHM** ~ **40 ps**

07/11/2017

DE LA RECHERCHE À L'INDUSTR

MCP-PMT Time Resolution Measurement

07/11/2017

DE LA RECHERCHE À L'INDUSTRI

Detector Time Resolution Setup

Detector right

13

DE LA RECHERCHE À L'INDUSTR

Towards full-size Detector

* MCP-PMT = 64 anodes
* grouping anodes by 4
* reading the 9 central anodes

Isla

Time Difference between the two detectors in the MCP-PMT center

Time Difference between the two detectors in the full MCP-PMT

Time Difference between the detectors with a better light collection : 2 photons per MCP-PMT

→ First test with PbF_2 crystal Cherenkov detector allows us to reach an efficiency of **28** % in rough agreement with simulations. Main degradation factor is the optical interface between crystal and windows MCP-PMT. We are working on improving it.

 \rightarrow In time resolution, we measure for a single detector:

* in the center of the detector **150 ps**.

* in all the readable surface **180 ps**, after a first work calibration.

We are now working on the optimization on read-out electronics.

(2016) p11008

E. Ramos et al., « Efficient, Fast, 511-keV y detection through Cherenkov radiation : the CaLIPSO optical detector », Vol.11

 \rightarrow We now focus on Time Resolution, in order to reach 150 ps (FWHM)

 \rightarrow Previous demonstrator: Time Resolution of (592 ± 18) ps (FWHM) Efficiency of 34.5 %

 \rightarrow TMBi used as liquid Cherenkov radiator

Previous demonstrator

 \rightarrow Twin to PECHE

Optical Demonstrator CaLIPSO assembly and filling

French-Ukrainian Workshop - C. Canot

Isfa

\rightarrow Efficiency measurement as previously : \sim 23 %

\rightarrow Time resolution in progress

CaLIPSO Optical Demonstrator

Thank you for your attention !

07/11/2017

DE LA RECHERCHE À L'INDUSTRII

Back-Up

07/11/2017

NECR = noise equivalent count rate, estimated with GATE-based simulation

