

Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals

Alex Fomin

Laboratoire de l'Accélérateur Linéaire Université Paris-Sud/IN2P3, Orsay, France

NSC Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine

06–08.11.2017 / French-Ukrainian Workshop

1 / 23

Outline

Magnetic dipole moment of charm baryons

- Introduction
- Principals of measurement

Deflection by a bent crystal

- Planar channeling
- Computational model
- Phenomenological formula

3 Sensitivity study

- Error of measured g-factor
- Crystal parameters optimization
- Data taking time

Outline

Magnetic dipole moment of charm baryons

- Introduction
- Principals of measurement

Deflection by a bent crystal

- Planar channeling
- Computational model
- Phenomenological formula

Sensitivity study

- Error of measured g-factor
- Crystal parameters optimization
- Data taking time

Λ_c^+ magnetic dipole moment measurement

$$\vec{\mu} = \frac{\mathsf{g}}{2} \frac{\mathsf{e}}{\mathsf{m}} \vec{S}, \qquad \vec{S} = \frac{\hbar}{2} \vec{\sigma}$$

Particle	g-factor	
electron	-2.002 319 304 361 82(52)	
muon	-2.002 331 84 18(13)	
neutron	-3.826 085 45(90)	
proton	proton +5.585 694 702(17)	
$\Sigma +$	+2.458(10)	

not measured for charmed, beauty baryons

H

• |g|pprox 2
ightarrow a point-like (Dirac particle)

•
$$|g|
ot\approx 2 \
ightarrow$$
 a composite structure

•
$$g\left(\Lambda_{c}^{+}(u,d,c)\right) \approx g_{c}$$

•
$$g_c = 2 \rightarrow g\left(\Lambda_c^+\right) = 1.80 - 2.05$$

How? Induce the precession of the polarization vector by the strong magnetic field Problem: $c \tau(\Lambda_c^+) \sim 60 \ \mu \text{m}$ — far too short for measuring Solution: conventional \vec{B} replaced by bent crystal

V.G. Baryshevsky, Pis'ma Zh. Tekh. Fiz., 5 (1979)

Alex Fomin (LAL (UPS) and KhNU)

Measuring the MDM of Λ_c^+

Precession of magnetic dipole moment: principals of measurement

$$\Theta_{\mu} \approx \gamma \left(\frac{g}{2} - 1\right) \Theta$$
$$\Theta = \frac{L_{\text{crys}}}{R}$$
$$\vec{\xi_i} = \xi (1, 0, 0)$$
$$\vec{\xi_f} = \xi (\cos \Theta_{\mu}, 0, \sin \Theta_{\mu})$$

Angular distribution of decay products:

$$\frac{1}{N}\frac{dN}{d\cos\vartheta_k} = \frac{1}{2}\left(1 + \alpha\,\xi_k\cos\vartheta_k\right)\Big|_{k=x,y,z}$$

Need:

$$\xi \neq 0 - \Lambda_c^+$$
 polarized at the production $\alpha \neq 0$ — keep polarization at the decay

Precession of magnetic dipole moment: angular analysis

$$\Delta g = \frac{1}{|\alpha_j|\xi|\Theta|} \sqrt{\frac{12}{|\Phi|t|\frac{\Gamma_j}{\Gamma}|\eta_{\rm det}^{(j)}|\int \frac{\partial N_{\rm tar+crys}}{\partial\varepsilon} \gamma^2 d\varepsilon}}$$

- $|\xi|$ polarization
- Φ proton flux
- t data taking time

- Decay channel dependent
 - α_j weak-decay parameter
 - Γ_j/Γ branching fraction
 - $\eta_{\rm det}^{(j)}$ detection efficiency

- Crystal dependent
 - Θ deflection angle
 - $\frac{\partial N_{\text{tar+crys}}}{\partial \varepsilon} \text{normalized spectra}$ of deflected particles (per incident proton)

Λ_c^+ magnetic dipole moment measurement: Exp. setup

This double crystal scheme is now under study with a 2 years program by UA9 at SPS.

 $\Lambda_c^+
ightarrow + + -$

EOI (CERN 2016): L. Burmistrov *et al.*, Tech. Rep. CERN-SPSC-2016-030. SPSC-EOI-012; Physics Beyond Colliders Kickoff Workshop (CERN 2016): A. Stocchi *et al.*; W. Scandale *et al.*

Alex Fomin (LAL (UPS) and KhNU)

Measuring the MDM of Λ_c^+

Outline

Magnetic dipole moment of charm baryons

- Introduction
- Principals of measurement

Deflection by a bent crystal

- Planar channeling
- Computational model
- Phenomenological formula

Sensitivity study

- Error of measured g-factor
- Crystal parameters optimization
- Data taking time

Channeling in a bent crystal

Effective potential

$$U_{\mathrm{eff}}(x) = U^{\pm}(x) - x \frac{\varepsilon}{R_c}$$

Critical radius

$${\it R}_{
m cr} = rac{arepsilon}{U_{x}^{\prime}} pprox d_{
m p} rac{arepsilon}{4 \; U_{0}}$$

Acceptance angle

$$heta_{
m acc} = \sqrt{rac{2\,U_{
m eff}}{arepsilon}} \left(1 - rac{arepsilon}{R}rac{1}{U_x'}
ight)$$

Alex Fomin (LAL (UPS) and KhNU)

Computational model

Binary collision model (scattering on atoms)

- Most natural way of taking into account the thermal vibration of atoms
- Deflection angle of particle is calculated on each consequent atom
- Displacement of nearest atom due to the thermal vibration is drawn by normal distribution

Aggregate collisions model (scattering on electrons)

• Multiple scattering with modified radiation length

Computational model

Binary collision model

Deflection angle of particle on each consequent atom:

$$\Delta \vec{\vartheta}_{\mathrm{a}}(\vec{r}) = \frac{Z e^2 \vec{r}}{\varepsilon r^2} \sum_{i=1}^3 \alpha_i \beta_i^2 K_0(\beta_i r), \quad \Delta \vec{\vartheta}_n = \sum_{k=1}^N \Delta \vec{\vartheta}_a(\vec{r}_k).$$

Displacement of nearest atom due to the thermal vibration:

$$P(u_x) du_x = \frac{1}{\sqrt{2 \pi \overline{u_x^2}}} \exp(-\frac{u_x^2}{2 u_x^2}) du_x$$

Aggregate collisions model

Multiple scattering on the electron subsystem

$$\begin{split} \sqrt{\overline{\vartheta_x^2}} &= \frac{13.6 \text{ MeV}}{\varepsilon} \sqrt{\frac{\Delta l}{X_0}} \left[1 + 0.038 \ln \left(\frac{\Delta l}{X_0} \right) \right], \\ \frac{\Delta l}{X_0} &= \frac{4 e^6}{m^2} \ln(m \, d_{\rm p}) \int_0^{\Delta l} \bar{n}_e(l) \, dl. \end{split}$$

Forster J S et al. Nucl. Phys. B 318 301 (1989)

Channeling in a bent crystal:

primary vs secondary beams

Primary particle beam

Secondary particle beam

- Primary particle beam
 - Parallel beam
 - Monochromatic
- Secondary particle beam
 - Uniform angular distribution
 - Wide energy distribution
 - Populated high energy states

Alex Fomin (LAL (UPS) and KhNU)

12 / 23

Deflection efficiency: phenomenological formula

$$\eta_{
m def}\left(arepsilon,~R,~L
ight)=\eta_{
m ang}~\eta_{
m ch}~\left(1-\eta_{
m dech}
ight)$$

- deflected fraction of secondary beam

Angular acceptance

$$\begin{split} \eta_{\rm ang} &= {\rm erf}\left(\sqrt{2} \,\, \theta_{\rm acc} \, \gamma\right) \\ \theta_{\rm acc} &= \sqrt{\frac{2 \,\, U_{\rm eff}}{\varepsilon}} \left(1 - \frac{\varepsilon}{R} \frac{1}{U_x'}\right) \end{split}$$

Channeling acceptance

$$\eta_{
m ch}\left(arepsilon,R
ight) = rac{\eta_{
m str}}{1+\left(rac{arepsilon}{R}~rac{1}{U_x^\prime\,k_ heta}
ight)^2}$$

Dechanneling probability

$$\eta_{
m dech}(\varepsilon, R, L) = 1 - e^{-\sqrt{\frac{L}{L_{
m dech}(\varepsilon, R)}}}$$

Dechanneling length

$$L_{\text{dech}}(\varepsilon, R) = L_{\max} \frac{\varepsilon}{\varepsilon_{\max}} e^{1 - \frac{\varepsilon}{\varepsilon_{\max}}}$$
$$L_{\max} = k_{\text{dech}} R \left(\frac{R_0}{R}\right)^{b_{\text{dech}}}$$
$$\varepsilon_{\max} = R F_{\text{dech}}$$

 $U_{\rm eff},~U'_x,~\eta_{
m str},~k_{ heta},~k_{
m dech},~R_0,~b_{
m dech},~F_{
m dech}$ were found for Si, Ge and Ge* crystals

Spectra of deflected Λ_c^+ produced by 7 TeV protons

Initial spectra (Pythia v8.1)

- credit to Leonid Burmistrov
- p N collision in a fixed target
- normalized to one produced Λ_c^+

Spectra after the target

$$\frac{\partial N_{\rm tar}}{\partial \varepsilon} = \frac{\rho \, N_{\rm A} \, A_{\rm tar}}{M_{\rm tar}} \, \sigma_{\Lambda_c} \, \frac{\partial N}{\partial \varepsilon} \, \int\limits_0^{L_{\rm tar}} e^{-\frac{L}{c\tau\gamma}} \, dL$$

- normalized to one initial proton

Spectra of deflected Λ_c^+

$$\frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} = \frac{\partial N_{\rm tar}}{\partial \varepsilon} \ \eta_{\rm def} \ e^{-\frac{L_{\rm crys}}{c \tau \gamma}}$$

Outline

Magnetic dipole moment of charm baryons

- Introduction
- Principals of measurement

Deflection by a bent crystal

- Planar channeling
- Computational model
- Phenomenological formula

Sensitivity study

- Error of measured g-factor
- Crystal parameters optimization
- Data taking time

Sensitivity study: error of measured *g*-factor. List of parameters.

$$\Delta g = \frac{1}{|\alpha_j|\xi|\Theta|} \sqrt{\frac{12}{|\Phi|t|\frac{\Gamma_j}{\Gamma}|\eta_{\rm det}^{(j)}|\int \frac{\partial N_{\rm tar+crys}}{\partial\varepsilon} \gamma^2 d\varepsilon}}$$

- $|\xi|$ polarization
- $\Phi\,$ proton flux
- t data taking time

- Decay channel dependent
 - α_j weak-decay parameter
 - Γ_j/Γ branching fraction
 - $\eta_{\rm det}^{(j)}$ detection efficiency

- Crystal dependent
 - Θ deflection angle
 - $\frac{\partial N_{\text{tar+crys}}}{\partial \varepsilon} \text{normalized spectra}$ of deflected particles (per incident proton)

Optimization of the crystal parameters

Alex Fomin (LAL (UPS) and KhNU)

Measuring the MDM of Λ_c^+

Sensitivity study: Crystal parameters optimization

$$\Delta g = \frac{1}{|\alpha_j|\xi|\Theta|} \sqrt{\frac{12}{\Phi \ t \ \frac{\Gamma_j}{\Gamma} \ \eta_{\rm det}^{(j)} \ \int \frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} \gamma^2 \ d\varepsilon}}$$

 $\eta_{\rm rel} = \frac{t_0}{t} = \frac{\Theta^2 \int \frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} \gamma^2 \, d\varepsilon}{\Theta_0^2 \int \frac{\partial N_{\rm tar+crys,0}}{\partial \varepsilon} \gamma^2 \, d\varepsilon}$ **Relative crystal efficiency:**

- data taking time ('0' indicates the reference crystal) t
- Θ deflection angle

 $\frac{\partial N_{\text{tar+crys}}}{\partial \varepsilon}$ – normalized spectra of deflected particles (per incident proton)

Optimal crystal for measuring the MDM of Λ_c^+

Relative crystal efficiency

$$\eta_{\rm rel} = \frac{t_0}{t} = \frac{\Theta^2 \int \frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} \gamma^2 \, d\varepsilon}{\Theta_0^2 \int \frac{\partial N_{\rm tar+crys,0}}{\partial \varepsilon} \gamma^2 \, d\varepsilon}$$

Optimal Length: $L_{\rm crys} = 8-11$ cm

Optimal Curvature:

Si	293K	R =	22 m	Θ_0	\approx	3.6	mrad
<u> </u>	00217	D	1	0		F 2	

$$Ge 295K \quad K = 15 III \quad \Theta \approx 5.5 III ad$$

Ge 80K R = 13 m $\Theta \approx 6.2$ mrad

Optimal Crystal:

$$rac{\eta_{
m rel}\left({
m Ge}
ight)}{\eta_{
m rel}\left({
m Si}
ight)}pprox$$
 2.5 !!

$$rac{\eta_{
m rel}\left({
m Ge}
ight)}{\eta_{
m rel}\left({
m Si}
ight)}pprox$$
 4.5 !!!!

Relative crystal efficiency

$$\eta_{\rm rel} = \frac{t_0}{t} = \frac{\Theta^2 \int \frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} \gamma^2 \, d\varepsilon}{\Theta_0^2 \int \frac{\partial N_{\rm tar+crys,0}}{\partial \varepsilon} \gamma^2 \, d\varepsilon}$$

relative to the reference Si configuration:

- Si 293K L = 8 cm $\Theta_0 \approx 3.6 \text{ mrad}$

But:

- silicon is more mature technology
- 8 cm is possible (difficulties with longer crystals)
- $\bullet\,$ Acceptance of "LHCb" $\sim 15\,$ mrad

work is ongoing

 $\eta_{\rm rol}^{-1}$ (Ge) $\approx 3-8$

 $\eta_{
m rel}^{-1}\left({
m Si}
ight)pprox 50{-200}$

$$\eta_{\mathrm{rel}}^{-1}$$
 (Ge) \approx 8–22

Alex Fomin (LAL (UPS) and KhNU)

Absolute statistical error of measured *g*-factor.

Decay channel parameters

$$\Delta g = \frac{1}{|\alpha_j|\xi|\Theta|} \sqrt{\frac{12}{|\Phi|t|\frac{\Gamma_j}{\Gamma} \eta_{\rm det}^{(j)} \int \frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} \gamma^2 d\varepsilon}}$$

$$c\tau(\Lambda) \approx 8 \text{ cm}$$

	Weak-decay	Branching	Detection
Decay channel	parameter	fraction	efficiency
	$lpha_j$	$\Gamma_j/\Gamma, \%$	$\eta_{ m det}^{(j)},\%$
$\Lambda_c^+ o \mathbf{\Lambda}(p \pi^-) \pi^+$	-0.91(15)	0.7(2)	0.2
$\Lambda_c^+ ightarrow {f \Lambda}(p\pi^-)e^+(\mu^+) u_{e(\mu)}$	-0.86(04)	1.3(4)	0.2
$\Lambda_c^+ o {f \Delta(1232)^{++}(p\pi^+)K^-}$	-0.67(30)	0.9(3)	3
$\Lambda_{c}^{+} ightarrow\overline{m{\kappa}}^{*}$ (892) $^{0}(m{\kappa}^{-}\pi^{+})$ p	-0.55(35)	1.6(5)	3
$\Lambda_c^+ ightarrow {f \Lambda}({f 1520})(pK^-)\pi^+$	-0.11(60)	0.8(3)	3

20 / 23

Absolute statistical error of measured *g*-factor.

Polarization as a function of transverse momentum.

$$\Delta g = \frac{1}{\alpha_j \left| \boldsymbol{\xi} \right| \Theta} \sqrt{\frac{12}{\Phi \ t \ \frac{\Gamma_j}{\Gamma} \ \eta_{\text{det}}^{(j)} \ \int \frac{\partial N_{\text{tar+crys}}}{\partial \varepsilon} \gamma^2 \ d\varepsilon}}{}$$

$$\sqrt{\frac{|\xi|_{\rm th}^2}{\sqrt{\frac{|\xi|_{\rm ex}^2}{|\xi|_{\rm ex}^2}}} = -0.37$$

- E. M. Aitala et al. *Phys. Lett.*, B471:449 2000
- - Fitted exp. data
 - Gary R. Goldstein.
 FNAL, Batavia, Illinois p.132–136, 1999.

21 / 23

Absolute statistical error of measured g-factor

as a function of data taking time

$$\Delta g = \frac{1}{|\alpha_j|\xi|\Theta|} \sqrt{\frac{12}{|\Phi|t|\frac{\Gamma_j}{\Gamma} \eta_{\rm det}^{(j)} \int \frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} \gamma^2 d\varepsilon}}$$

Reference crystal:

Si
$$L = 8$$
 cm

$$R = 22 \, {\rm m}$$

This proposal is now considered in LHCb and so we use the required parameters

Absolute statistical error of measured g-factor

as a function of data taking time

$$\Delta g = \frac{1}{|\alpha_j|\xi|\Theta|} \sqrt{\frac{12}{\Phi t \frac{\Gamma_j}{\Gamma} \eta_{\rm det}^{(j)} \int \frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} \gamma^2 d\varepsilon}} \right|$$

Ge L = 12 cmR = 8 m

Work is going on both UA9 and LHCb

Alex Fomin (LAL (UPS) and KhNU)

Measuring the MDM of Λ_c^+