

Processes with half-bare particles at high energy

S.Fomin^{1,2}, M.Shul'ga^{1,2}, O.Fomin¹⁻³, A.Stocchi³

¹ NSC "Kharkiv Institute of Physics & Technology", Kharkiv, Ukraine
 ² V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
 ³ Laboratoire de l'Accélérateur Linéaire, CNRS–UPS, Orsay, France

e-mail: sfomin@kipt.kharkov.ua

WS LIA IDEATE

6 - 8 November 2017

LAL, Orsay, France

Overview

- Coherence length of bremsstrahlung process
- LPM effect and Radiation length
- Suppression effects in a thin layer of substance
- CERN experiment NA63 and radiation of "half-bare" electron
- Spectral-angular distribution and polarization of γ-quanta
 - at the non-dipole regime of radiation
- Formation zone of pair production processes
- Coherent effect at pair production in crystal and its suppression
- Conclusion and prospective

Multiple Scattering Effect on Radiation in Amorphous Medium

L. Landau and Ya. Pomeranchuk Dokl. Akad. Nauk SSSR 92 (1953) 735. A.B. Migdal, Dokl. Akad. Nauk SSSR 96 (1954) 49; JETP 32 (1957) 633.

LPM effect at very high energy

Radiation length depends on the particle energy !!!

Detector design and radiation shielding calculation - GEANT, ...

1994: SLAC experiment E-146

Volume 34 No. 1 January/February 1994

Covering current developments in high energy physics and related fields worldwide

STANFORD (SLAC) Photon theory verified after 40 years

Developed by Landau, Pomeranchuk, and Migdal forty years ago, the LPM effect predicts that the production of low energy photons by high energy electrons should be suppressed in dense media.

In 1993 this was finally verified at Stanford (SLAC). The diagram compares data (crosses) with Monte Carlo simulations - one (dashed line) including LPM suppression and the other (dotted line) ignoring it - for 25 GeV electrons on uranium. Data recorded with two different targets were subtracted to remove edge effects.

A collaboration of physicists from the University of California at Santa Cruz (UCSC), the Stanford Linear Accelerator Center (SLAC), American University and Livermore has verified a theory that is almost forty years old.

In SLAC experiment E-146, 25 GeV electrons passed through slim targets of carbon, aluminum, iron, gold, lead, tungsten and uranium — as well as a very thin gold target. After traversing the target, the electrons were deThe E-146 data confirm that the LPM effect exists. The magnitude of the suppression in dense media such as uranium is consistent with Migdal's prediction. Lighter targets such as carbon show little suppres-

SLAC experiment E-146

Anthony P.L. et al., Phys. Rev. Lett. **75** (1995) 1949. Klein S., Rev. Mod. Phys. **71** (1999) 1501.

Radiation in a thin layer of matter : $l_c >> T$

Ī

Shul'ga N.F. and Fomin S.P., JETP Lett. 27 (1978)126; Fomin S.P. and Shul'ga N.F., Phys. Lett. A114 (1986)148.

$$\frac{d^2 E}{d\omega d0} = \frac{e^2 \omega^2}{4\pi^2} \left[\vec{n} \times \vec{I} \right]^2$$

$$= i \int_{-\infty}^{\infty} dt \, e^{i\left(\omega t - \vec{k}\vec{r}(t)\right)} \frac{d}{dt} \frac{\vec{v}}{\omega - \vec{k}\vec{v}}$$

$$\vec{I} \approx i \left(\frac{\vec{v}'}{\omega - \vec{k}\vec{v}'} - \frac{\vec{v}}{\omega - \vec{k}\vec{v}} \right)$$

BH

$$\frac{dE}{d\omega} \approx \begin{cases} \frac{3e^2}{\pi} \xi^2, & \xi^2 \ll 1, \\ \frac{2e^2}{\pi} \ln(4\xi^2), \xi^2 \gg 1. \end{cases} \xrightarrow{dE} \begin{cases} T, & \xi^2 \ll 1, \\ \ln T, & \xi^2 \gg 1. \end{cases} \xrightarrow{\sqrt{d\omega}} x^2 \vartheta^2 \approx 1 \xrightarrow{L} x^2 \vartheta^2 \otimes 1 \xrightarrow{L} x^2 y^2 \otimes 1 \xrightarrow{L$$

10

Electromagnetic field of electron at scattering

$$\left(\Delta - \frac{\partial^2}{\partial t^2}\right)\varphi = 4\pi e\delta(\vec{r} - \vec{r}(t))$$

$$\varphi_v(\vec{r}, t) = \frac{e}{\sqrt{(z - vt)^2 + \rho/\gamma^2}}, \quad t < 0$$
- retarded Liénard-Wiechert potential
$$\varphi_{ret}(\vec{r}, t)\Big|_{r>0} = \frac{e}{2\pi^2} \operatorname{Re} \int \frac{d^3k}{k} e^{i\vec{k}\cdot\vec{r}} \left\{ \frac{1 - e^{-i(k - \vec{k}\cdot\vec{v}_1)t}}{\omega - \vec{k}\cdot\vec{v}_1} e^{-i\vec{k}\cdot\vec{v}_1t} + \frac{1}{k - \vec{k}\cdot\vec{v}} e^{-ikt} \right\} = \Theta(t - r)\varphi_v(\vec{r}, t) + \Theta(r - t)\varphi_v(\vec{r}, t)$$

$$\Delta t \ll (k - kv_1)^{-1} \approx 2\gamma^2/\omega = l_c \quad \text{For } \varepsilon = 25 \,\text{GeV}, \quad \omega = 10 \,\text{MeV}, \quad l_c = 0.1 \,\text{mm}$$

E.Feinberg, *JETP* 50 (1966) 202.

S.P. Fomin, N.F. Shul'ga, *Phys. Let. A* 114 (1986) 148 A.I. Akhiezer, N.F. Shul'ga, *Sov.Phys.Usp.* 30 (1987) 197

Quantitative theory of radiation in a thin layer of matter

Shul'ga N.F., Fomin S.P., JETP Lett. 63 (1996) 873; JETP 86 (1998) 32; NIM B145 (1998) 73.

$$\left\langle \frac{dE}{d\omega} \right\rangle = \int d\vec{\vartheta}_{s} f(\vec{\vartheta}_{s}) \frac{dE}{d\omega}, \qquad f_{B-M}(\vartheta) = \frac{1}{2\pi} \int_{0}^{\infty} \eta \, d\eta \, J_{0}(\eta \vartheta) \exp\left\{ -2\chi_{c}^{2} \int_{0}^{\infty} \chi \, d\chi \, q(\chi) \chi^{-4} \left[1 - J_{0}(\eta \chi) \right] \right\}$$

$$\gamma^2 \overline{\vartheta^2} > 1 \qquad \frac{\mathrm{d}\mathrm{E}_{\mathrm{SF}}}{\mathrm{d}\omega} = \frac{2\mathrm{e}^2}{\pi} \left[\left(\ln \mathrm{a}^2 - \mathrm{C} \right) \left(1 + \frac{2}{\mathrm{a}^2} \right) + \frac{2}{\mathrm{a}^2} + \frac{\mathrm{C}}{\mathrm{B}} - 1 \right] \qquad \mathrm{a}^2 = \gamma^2 \overline{\vartheta^2}$$

$$\overline{\vartheta^2} = \chi_c^2 B$$
$$-\ln B = \ln(\varepsilon^2 R^2 \chi_c^2) + 1 - 2C$$
$$\chi_c^2 = 4\pi nLZ^2 e^4 / \varepsilon^2$$
$$C = 0,577$$

13

Thickness dependence !!!

CERN NA63 experiment 2005-2010

Ulrik I.Uggerhoj et al. Phys.Rev. D 72 (2005) 112001. H.D.Thomsen et al. Phys.Lett. B 672 (2009) 323-327. H.D.Thomsen et al., Phys. Rev. D 81 (2010) 052003.

0.1

<u>dE X</u>o

1.2 -

1.0

0.8 -

0.6

0.4

0.2

Ŧ

 $d\omega t$

*l*_c t, %X₀

10

CERN experiment NA63 - June 2009

June 5, 2009

Dear Nikolai and Serguei,

It is a pleasure for me to tell you that in the CERN experiment we are running these days, we have confirmed the logarithmic thickness dependence that your theory for thin targets has predicted, ...

... we are certain that the effect is there, and we thought we would let you know that we have 'seen' the 'half-bare' electron :-)

Best regards from all of us at NA63,

Ulrik Uggerhoj

Spokesman of CERN NA63 collaboration Professor, Aarhus University, Denmark

BH, LPM and TSF theories applicability ranges

The cover picture from H.Thomsen **PhD thesises**

$$\vartheta_{ms}(l_{\gamma}) = 1/\gamma$$

 $l_{\gamma} = \frac{e^2}{2\pi} X_0$ $l_c = \frac{2\varepsilon\varepsilon'}{m^2\omega}$

Figure 4.8: The bremsstrahlung power spectrum level (in arbitrary units) in a small part of the $(\Delta t, \ell_{f0}, \ell_{\gamma})$ parameter space. The contour lines trace lines of equal bremsstrahlung yield. Upper horizontal axis shows the equivalent tantalum thickness. For the calculation, $E_0 = 200$ GeV and tantalum have been assumed.

Multiple scattering effects on the dynamics and radiation of fast charged particles in crystals. Transients in the nuclear burning wave reactor.

JNIVERSITÉ

Alex Fomin

Laboratoire de l'Accélérateur Linéaire Université Paris-Sud/IN2P3, Orsay, France

V.N. Karazin Kharkiv National University Kharkiv, Ukraine

22.09.2017 / Defense of PhD thesis

Special features of radiation in a thin target

Spectral-angular density of radiation

$$\frac{d^2 E}{d\omega do} = \frac{e^2 \omega}{4\pi^2} \left| \vec{n} \times \vec{I} \right|^2, \quad \vec{I} = i \int_0^T dt \, e^{i(\omega t - \vec{k} \cdot \vec{r}(t))} \frac{d}{dt} \, \frac{\vec{v}(t)}{\omega - \vec{k} \cdot \vec{v}(t)}$$

$$I_{\rm c} = \frac{2\gamma^2}{\omega}$$

$$\vec{I} pprox i \left(rac{ec{
u}'}{\omega - ec{
k} \cdot ec{
u}'} - rac{ec{
u}}{\omega - ec{
k} \cdot ec{
u}}
ight),$$

$$l_{\rm c} \gg T$$

Polarization tensor

$$J_{ik} = \frac{e^2 \omega^2}{4\pi^2} \left(\vec{e}_i \vec{I} \right) \left(\vec{e}_k \vec{I}^* \right)$$

$$\frac{d^{2}E}{d\omega do} = J_{11} + J_{22} = \frac{e^{2}\gamma^{2}}{\pi^{2}} \frac{\beta^{2}}{(1+\alpha^{2})^{2}} \frac{\left(\left(1-\alpha^{2}\right)\sin\phi + \alpha\beta\right)^{2} + \left(1+\alpha^{2}\right)^{2}\cos^{2}\phi}{\left(1+\alpha^{2}+\beta^{2}-2\,\alpha\beta\sin\phi\right)^{2}}$$

 $lpha=\gamma\, heta$, heta and arphi are the polar and azimuthal angles of emitted photon, $eta=\gamma\, heta_{
m s}$

Radiation in a thin target: dipole and non-dipole case

 $lpha=\gamma\, heta$, heta and arphi are the polar and azimuthal angles of emitted photon, $eta=\gamma\, heta_{
m s}$

Radiation of an electron beam in a thin amorphous media

$$\left\langle \frac{d^2 E}{d\omega do} \right\rangle = \int d^2 \vartheta_s \, f_{\rm BM}(\vartheta_s) \, \frac{d^2 E}{d\omega do}$$
$$f_{\rm BM}(\vartheta_s) = \frac{1}{2\pi} \int_0^T \eta \, d\eta \, J_0(\eta \, \vartheta_s) \times \exp\left\{-n \, T \int \chi \, d\chi \, \sigma(\chi) [1 - J_0(\eta \, \chi)]\right\}$$

Important for future lepton colliders (ILC or CLIC)

Radiation in a thin crystal

 $f_{\mathrm{MC}}(\vartheta_s, \varphi) \leftarrow \text{computation model described above}$

Polarization of radiation in a thin crystal

$$P_{
m L} = rac{J_{11} - J_{22}}{J_{11} + J_{22}}$$

$$P_{\rm circ} = \frac{J_{12} - J_{21}}{J_{11} + J_{22}}$$

Polarization tensor

$$J_{ik} = \frac{e^2 \omega^2}{4\pi^2} \left(\vec{e}_i \vec{I} \right) \left(\vec{e}_k \vec{I}^* \right) \qquad \vec{I} = i \int_0^T dt \ e^{i(\omega t - \vec{k} \cdot \vec{r}(t))} \frac{d}{dt} \ \frac{\vec{v}(t)}{\omega - \vec{k} \cdot \vec{v}(t)}$$

$$P_{
m L} = 1 - rac{2\,lpha^2\cos^2\phi\,\left(eta-2\,lpha\,\sin\phi
ight)^2}{\left(\left(1-lpha^2
ight)\sin\phi+lphaeta
ight)^2+\left(1+lpha^2
ight)^2\cos^2\phi}$$

$$P_{\rm circ} = 0$$

Polarization of radiation: dipole and non-dipole cases

One can produce polarized beam if running in a non-dipole regime

Bak J.F. et al. Nucl. Phys., B302 (1988) 525. Laskin N., Shul'ga N., Phys.Lett. A135 (1989) 147.

<u>CERN experiment</u>: <u>Theory</u>:

Multiple scattering on crystal atomic strings in random string approximation

$$\frac{d}{dz}f(\varphi,z) = n d \psi \int_{-\infty}^{\infty} db \left[f(\varphi + \varphi(b), z) - f(\varphi, z) \right] \qquad \int_{-\pi}^{\pi} d\varphi f(\varphi, z) = 1$$

$$f(\varphi,z) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \cos k\varphi \exp \left\{ -n d \psi z \int_{-\infty}^{\infty} db \left[1 - \cos(k\varphi(b)) \right] \right\}$$

$$\vartheta(b) = 2 \psi \sin \frac{\varphi(b)}{2} \qquad \overline{\vartheta^2} = \int_{-\pi}^{\pi} d\varphi f(\varphi, z) 4 \psi^2 \sin^2 \frac{\varphi}{2}$$

$$\overline{\vartheta^2} = 2 \psi^2 \left\{ 1 - \exp \left[-2n d \psi z \int_{-\infty}^{\infty} db \sin^2 \left(\frac{\varphi(b)}{2} \right) \right] \right\}$$

<u>—</u>∞

Multiple scattering on crystal atomic strings in random string approximation

$$\overline{\vartheta^2} = 2\,\psi^2 \left\{ 1 - \exp\left[-2\,n\,d\,\psi\,z\,\int_{-\infty}^{\infty} db\,\sin^2\left(\frac{\varphi(b)}{2}\right) \right] \right\}$$

For
$$qU(\mathbf{p}) = \frac{\pi}{2} \frac{R}{\mathbf{p}} U_0$$
 $f(\mathbf{q}, z) = \frac{1}{2\pi} \frac{\operatorname{sh} B}{\operatorname{ch} B - \cos \varphi}$ $B = \pi d n z \psi_c^2 R / \psi$

$$\vartheta(b) = 2\psi\sin\frac{\varphi(b)}{2} \qquad \overline{\vartheta^2} = 2\psi^2 \left\{ 1 - \exp\left[-\pi n \, d \, R \, \psi_c^2 \, z \, / \, \psi\right] \right\}$$

For thick crystal $(T \sim L_0)$: B >> 1 $f(\phi, z) = \frac{1}{2\pi}$ $\overline{\vartheta}^2 = 2\psi^2$

 L_0 – thickness of uniform distribution:

$$\frac{1}{L_0} = nd \, \psi \int_{-\infty}^{\infty} db \left[1 - \cos(\varphi(b)) \right]$$

Multiple scattering on crystal atomic strings in random string approximation

$$\psi \gg \psi_{c}: \quad \frac{d}{dz}f = \frac{1}{2}nd \psi \left(\int_{-\infty}^{\infty} db \, \varphi^{2}(b)\right) \frac{\partial^{2} f}{\partial \varphi^{2}} \qquad f(\varphi, z) = \frac{1}{\sqrt{2\pi\varphi^{2}}} \exp\left(-\frac{\varphi^{2}}{2\varphi^{2}}\right)$$
$$\vartheta(b) = 2\psi \sin\frac{\varphi(b)}{2} \qquad \overline{\varphi^{2}} < 1 \qquad \overline{\varphi^{2}} = ndz \psi \int_{-\infty}^{\infty} db \, \varphi^{2}(b)$$
$$U_{L}(\rho) = \frac{1}{2}U_{0} \ln\left(1 + \frac{3R^{2}}{\rho^{2}}\right) \qquad \overline{\vartheta^{2}}(T) = \sqrt{3}(4 - \pi)4\pi^{2}Z^{2}e^{4}n RT / (\epsilon^{2}\psi d)$$
$$\xrightarrow{\varphi^{2}}{p} \qquad \psi = \frac{1}{2}e^{4}n RT / (\epsilon^{2}\psi d)$$

S.P. Fomin, N.F. Shul'ga. On the theory of fast particles scattering in a crystal. Preprint KFTI 79-42, Kharkov, 34c., 1979. N.F. Shul'ga, V.I. Truten', S.P. Fomin, Journal of Thech. Phys., 52 (1982) 2279.

$$d\sigma_{BH} = 4e^2 \left(\frac{Ze^2}{m}\right)^2 \left\{ \left[1 - \frac{2}{3}\frac{\varepsilon'}{\varepsilon} + \left(\frac{\varepsilon'}{\varepsilon}\right)^2\right] \ln\left(183 \cdot Z^{-1/3}\right) + \frac{1}{9}\frac{\varepsilon'}{\varepsilon} \right\} \frac{d\omega}{\omega}$$

$$d\sigma_{BH}^{\pm} = 4e^{2}\left(\frac{Ze^{2}}{m}\right)^{2} \left\{ \left(1 - \frac{4\varepsilon_{+}\varepsilon_{-}}{3\omega^{2}}\right) \ln\left(183Z^{-1/3}\right) - \frac{\varepsilon_{+}\varepsilon_{-}}{9\omega^{2}} \right\} \frac{d\varepsilon_{+}}{\omega}$$

Coherence length of e⁺e⁻ - pair production

 $\omega = \mathcal{E}_{+} + \mathcal{E}_{-}, \quad \mathbf{k} = \mathbf{p}_{+} + \mathbf{p}_{-} + \mathbf{q}$

$$r_{\parallel eff} \approx q_{\parallel eff}^{-1} \approx l_c = \frac{2\varepsilon_+\varepsilon_-}{m^2\omega}$$

$$q_{\parallel eff} = q_{\parallel \min} = \omega m^2 / 2\varepsilon_+ \varepsilon_-$$

$$d\boldsymbol{\sigma} \approx \int d^2 q_{\perp} \int_{q_{\min}}^{\infty} dq_{\parallel} \frac{q_{\perp}^2}{q_{\parallel}^2} \left| U_q \right|^2$$

$$r_{\perp eff} \approx \frac{1}{q_{\perp eff}} \approx R$$

 $:!: \omega \geq \mathcal{E}_{\pm}: \ l_c^{\pm} \sim \omega$

 $\omega = 1 \text{ TeV}$ $U(r) = \frac{Z|e|}{r} e^{-r/R} \qquad \frac{\mathcal{E}_{\pm}}{l_c^{\pm}} \approx 500 \text{ GeV}$ $l_c^{\pm} \approx 0.5 \ \mu\text{m} !!!$

30

Interaction with atomic string of a crystal

Akhieser A.I., Truten' V.I., Fomin S.P., Shul'ga N.F., "Coherent effect in e⁺e⁻-pair production in crystal" Sov. Phys. Doklady, 249 (1979) 338.

LPM effect at e⁺e⁻-pair production ($\gamma \theta_+ > 1$)

S. Eidelman et al. (PDG) Physics Letters B592 (2004) 1.

Conclusion and prospective

- 1. The electrodynamics processes, such as bremsstrahlug, pair production, transition radiation and some others at ultra relativistic charged particles interaction with amorphous and crystalline matter have a specific behavior connected with non-equilibrium own Coulomb field of the particle (half-bare particle).
- 2. The corresponding effects have to be studied in details including angular distributions and polarization characteristics both theoretically and experimentally using existing accelerators, i.e. SPS CERN, to be included in computer codes, like GEANT and others, which are using at designing detectors and other systems for a new generation of lepton colliers of TeV energy diapason (ILC, CLIC, NLC, ...) as well as for cosmic rays detectors.
- 3. The analogous of the LPM and TSF effects have to take place in QCD at quarkgluon interactions.

PHYSICS REVIEWS Volume 22, Part 1 Landau-Pomeranchuk-**Migdal Effect** A.I.Akhiezer, N.F.Shul'ga and S.P.Fomin

MBRIDGE SCIENTIFIC PUBLISHERS

2005

A.I. Akhiezer, N.F. Shul'ga, S.P. Fomin. *The Landau-Pomeranchuk-Migdal Effect.*Cambridge Scientific Publishers,
Cambridge, UK, 2005, 215 p.

Thank you for attention!