Gauge-Higgs unification : signals at LHC/ILC

Yutaka Hosotani

LAL, Orsay, 5 December 2017

Smaller gauge symmetry at low energies

Spontaneous symmetry breaking

Large gauge symmetry

Aharonov-Bohm effect

$$e^{-\overrightarrow{B}\neq 0}$$

$$\oint ec A \, dec x = \int ec B \, dec S = \Phi \ A_ heta = rac{\Phi}{2\pi r}$$

$$F_{\mu
u} = 0$$
, but nontrivial. $\exp\left\{irac{e}{\hbar c}\ointec{A}\,dec{x}
ight\} = e^{i heta_{AB}} \quad eta_{AB} = rac{e\Phi}{\hbar c}$ AB phase

$$\exp\left\{irac{e}{\hbar c}\int_{0}^{2\pi R}dyA_{y}
ight\}=e^{i heta_{AB}}$$

Gauge transformation

 $egin{aligned} & \Lambda = eta y \;,\;\; A'_y = A_y + eta & \Lambda = eta y \;,\;\; A'_y = A_y + eta & \psi & \psi' = e^{i(e/\hbar c)\Lambda} \psi & e^{i(e/\hbar c)eta \cdot 2\pi R} = 1 \end{aligned}$

AB phase θ_{AB} cannot be gauged away.

Non-Abelian gauge fields on $M^4 imes S^1$

$$A_y = {
m const} \;,\;\; F_{MN} = 0$$

$$W = P e^{ig \oint A_y dy} \quad \not \propto I$$

eigenvalues : AB phases

example: SU(3)

$$\{e^{i heta_1},e^{i heta_2},e^{i heta_3}\}~~(\Sigma heta_j=0)$$

$$egin{aligned} & heta_1 &= heta_2 &= heta_3 & oldsymbol{SU(3)} \ & heta_1 &= heta_2
eq heta_3 & oldsymbol{SU(2)} imes oldsymbol{U(1)} \ & heta_j
eq heta_k & oldsymbol{U(1)} imes oldsymbol{U(1)} \end{aligned}$$

$\{ \theta_j \}$ undetermined at the classical level

 \boldsymbol{y}

 \boldsymbol{R}

$heta_{H} = \set{ heta_{j}}$ determined at the quantum level

$$egin{aligned} &A_M(x,y) = \sum\limits_n A_M^{(n)}(x) \, e^{iny/R} \ \mathcal{L} = -rac{1}{2} \mathrm{tr} \, F_{MN} F^{MN} \Rightarrow \, \mathrm{tr} \, (\partial_y A_\mu + ig[A_\mu, A_y^c])^2 \ &A_\mu^{(jk)(n)}: \ m_n^2 = rac{1}{R^2} \Big(n + rac{ heta_j - heta_k}{2\pi}\Big)^2 \ &V_{\mathrm{eff}}^{1\,loop}(heta_H) = \sum\limits_n \int rac{d^3p}{(2\pi)^3} (\pm) rac{1}{2} \sqrt{ec{p}^2 + m_n(heta_H)^2} \ & ext{ zero point energies} \ & heta_H ext{-dependent part}: \ \mathbf{finite} \end{aligned}$$

SU(3) $V_{\text{eff}}(\theta_1, \theta_2)^{1 \text{ loop}}$

D = 5

OSAKA UNIVERSITY

SO(5)xU(1) GHU in Randall-Sundrum

Agashe, Contino, Pomarol 2005 YH, Sakamura 2006 Medina, Shah, Wagner 2007 YH, Oda, Ohnuma, Sakamura 2008 Funatsu, Hatanaka, YH, Orikasa, Shimotani 2013

$$P_0 = P_1 = egin{pmatrix} -1 & & & \ & -1 & & \ & & -1 & & \ & & & -1 & \ & & & +1 \end{pmatrix}$$

 $SO(5)
ightarrow SO(4) \simeq SU(2)_L imes SU(2)_R$

At low energies

Nearly the same as SM

gauge couplings of quarks/leptons~ SM

	g_{GHU}/g_{SM}	$(heta_H=0.115)$
W to $\ell \nu$, ud , cs	1.00019	
tb	0.9993	
WWZ	0.9999998	

Higgs couplings to W, Z, quarks/leptons ~ $(SM) \times \cos \theta_H$

 $\cos \theta_H \sim 0.995 ~{
m for} ~ heta_H = 0.1$

Higgs decays:

 $\Gamma(H \to \gamma \gamma), \mu(H \to \gamma \gamma) \sim (SM) \times \cos^2 \theta_H$ corrections due to KK modes < 0.2%

Branching fractions ~ (SM)

Higgs self-couplings

FHHOS 1301.1744, 1404.2748

Small deviation for $\theta_H \sim 0.1$

Extra dims KK excitations

KK gluons, W', Z'

	$ heta_{H}=0.115$		$ heta_{H}=0.0917$		$ heta_{H}=0.0737$	
$n_F=4$	$z_L =$	$= 10^5$	$z_L = 3$	$3 imes 10^4$	$z_L =$	$= 10^4$
Z'	$m({ m TeV})$	$\Gamma({ m GeV})$	$m({ m TeV})$	$\Gamma({ m GeV})$	$m({ m TeV})$	$\Gamma({ m GeV})$
$Z_R^{(1)}$	5.67	729	6.74	853	7.92	1058
$Z^{(1)}$	6.00	406	7.19	467	8.52	564
$\gamma^{(1)}$	6.01	909	7.20	992	8.52	1068

Funatsu, Hatanaka, YH, Orikasa,

LHC: 1612.03378 (PRD) ILC: 1705.05282v3 (PLB)

Left-right asymmetry in the couplings to Z'

Wave functions

 q_L , ℓ_L

hysics

- ' : localized near IR brane
- q_R , ℓ_R near IR brane
 - large

small

near UV brane

light quarks, leptons: sharply localized top, bottom quarks : spread with long tails

	2	Z			2	<u>Z'</u>		
$\int f$	g_{Zf}^L	g^R_{Zf}	$g^L_{Z^{(1)}f}$	$g^R_{Z^{(1)}f}$	$g^{L}_{Z^{(1)}_{R}}$	$g^R_{Z^{(1)}_R f}$	$g^L_{\gamma^{(1)}f}$	$g^R_{\gamma^{(1)}f}$
ν_e	0.5704	0	-0.209	0	0	0	0	0
ν_{μ}	0.5704	0	-0.209	0	0	0	0	0
ν_{τ}	0.5704	0	-0.209	0	0	0	0	0
e	-0.3066	0.2639	0.112	1.044	0	-1.438	0.177	-1.869
$\mid \mu$	-0.3066	0.2639	0.112	0.980	0	-1.361	0.177	-1.783
$ \tau$	-0.3066	0.2639	0.112	0.973	0	-1.296	0.177	-1.687
u	0.3945	-0.1759	-0.145	-0.684	0	0.944	-0.118	1.243
c	0.3945	-0.1759	-0.148	-0.624	0	0.882	-0.118	1.151
t	0.3937	-0.1759	0.564	-0.425	1.124	0.626	0.461	0.773
d	-0.4824	0.08796	0.177	0.342	0	-0.472	0.059	-0.622
s	-0.4824	0.08796	0.177	0.316	0	-0.441	0.059	-0.575
b	-0.4825	0.08795	-0.696	0.213	1.122	-0.313	-0.230	-0.387
	in unit of g_w ($\theta_H = 0.0917$)						917)	

Funatsu, Hatanaka, YH, Orikasa, 1705.05282

Energies at 250 GeV, 500 GeV, 1 TeV Polarized electron/positron beams

Interference among γ, Z, Z'

4% at $P_{\rm eff}=0.877$ at $250\,{
m GeV}$

250 GeV, 250 fb⁻¹ $P_{\rm eff} = 0.8$ 6 σ (4 σ)

Polarization dependence

Left-right asymmetry

$$R_{f,RL} = \frac{\sigma(e^+e^- \to \bar{f}f; P_{e^-} = +\overline{P}, P_{e^+} = 0)}{\sigma(e^+e^- \to \bar{f}f; P_{e^-} = -\overline{P}, P_{e^+} = 0)}$$

Systematic errors reduced.

	$250{ m GeV},\overline{P}=0.8,250{ m fb}^{-1} imes 2$				
f	S	M	GHU		
J	$R_{f,RL}$	$\Delta \sigma$	0.0917θ	H 0.0737	
μ	0.890	0.3%	-3.4%	-2.2%	
b	0.349	0.3%	-3.1%	-2.1%	

	Gauge-Higgs	Composite Higgs			
	SO(5) imes U(1)				
Higgs	5d gauge theory	Composite picture			
	gauge field AB phase $ heta_H$	pseudo-NG boson			
	$oldsymbol{ heta}_{H}$	vacuum $\langle h angle \misalignment angle rac{\langle h angle}{f_\pi}$			
$rac{\kappa_V}{\kappa_f}$	$\cos heta_H$	$\cos \theta_H$ (MCHM) not fixed			
Z'	$Z^{(1)}, \gamma^{(1)}, Z^{(1)}_R$ $7 \sim 10 \mathrm{TeV}$ large widths, $J^{(1)}$	technirho meson			
		$\epsilon = \sin heta_H < 0.3$			
constraint	$\theta_H < 0.1$	$(\xi = \theta_H^2 < 0.1)$			
D Physics	Trom Z'	from S parameter			

Summary

Gauge-Higgs unification

Higgs = gauge boson in 5d

Large left-right asym. in Z' couplings Signals can be seen at LHC/ILC.

Normalized density:

normalized

Higgs couplings

$$\begin{split} \theta_{H} + \frac{H(x)}{f_{H}} & f_{H} \sim \frac{2}{g_{w}} \sqrt{\frac{k}{L}} z_{L}^{-1} \\ m_{W} \sim \sqrt{\frac{k}{L}} z_{L}^{-1} \sin \theta_{H} = \frac{1}{2} g_{w} f_{H} \sin \theta_{H} & \equiv \frac{1}{2} g_{w} v_{\text{SM}} \\ \hline v_{\text{SM}} = f_{H} \sin \theta_{H} \\ \mathcal{L}_{\text{eff}}^{q} = a \sin \left(\theta_{H} + \frac{H}{f_{H}} \right) \overline{q} q \\ m_{q} = a \sin \theta_{H} \\ y_{q} = \frac{a}{f_{H}} \cos \theta_{H} = \frac{m_{q}}{v_{\text{SM}}} \cos \theta_{H} \qquad \underbrace{y_{q} = y_{q}^{\text{SM}} \cos \theta_{H}} \\ \end{split}$$

EW sym breaking

Physics

A IINIVERSITY

- $egin{aligned} & heta_H = 0.115 \ (ext{example}) \ & m_Z, \ lpha, \ \sin^2 heta_W \ & \ &
 ightarrow m_{ ext{KK}} = 7.41 \ ext{TeV} \end{aligned}$
- $m_t = 171 \, {
 m GeV}, \; m_H = 125 \, {
 m GeV}$ $ightarrow c_t = 0.227, \; c_F = 0.332$ $m_ au, \; m_e = 0.511 \, {
 m MeV}$
 - $ightarrow c_{ au} = 0.950, \; c_e = 1.72$

x-4