Top quark mass effects in Higgs boson pair production

Gudrun Heinrich

Max Planck Institute for Physics, Munich

LAL Orsay, December 12, 2017

TIMELINE BEYOND RUN2

Exploring the Higgs sector

can be measured e.g. in Higgs boson pair production

current best limit $\sigma_{HH} \leq 19 \, \sigma_{HH}^{SM}$ ($b\bar{b}\gamma\gamma$ channel) measurement of λ_{3h} only at HL-LHC

Higgs boson pair production

(Werner-Heisenberg-Institut)

Frederix, Hirschi, Mattelaer, Maltoni, Torrielli, Vryonidou, Zaro '14; Maltoni, Vryonidou, Zaro '14

NNLO in $m_t \rightarrow \infty$ limit: +20%

• total xs NNLO De Florian, Mazzitelli '13

- including all matching coefficients Grigo, Melnikov, Steinhauser '14
- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL Shao, Li, Li, Wang '13; De Florian, Mazzitelli '15 +9%
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

NNLO in $m_t \rightarrow \infty$ limit: +20%

- total xs NNLO De Florian, Mazzitelli '13
- including all matching coefficients Grigo, Melnikov, Steinhauser '14
- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL Shao, Li, Li, Wang '13; De Florian, Mazzitelli '15 +9%
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

NLO calculation with full top mass dependence

Borowka, Greiner, GH, Jones, Kerner, Schlenk, Schubert, Zirke '16

4 independent scales s12, s23, mH, mt all integrals calculated **numerically** with

SecDec

Borowka, GH, Jones, Kerner, Schlenk, Zirke '15 Borowka, GH, Jahn, Jones, Kerner, Schlenk, Zirke '17

 q_T resummation NLL+NLO

Ferrera, Pires '16

numerical evaluation of multi-loop integrals

http://secdec.hepforge.org https://github.com/mppmu/secdec/releases

SecDec is hosted by Hepforge, IPPP Durham

SecDec

Sophia Borowka, Gudrun Heinrich, Stephan Jahn, Stephen Jones, Matthias Kerner, Johannes Schlenk, Tom Zirke

A program to evaluate dimensionally regulated parameter integrals numerically

home download program user manual faq changelog

NEW! The latest version of pySecDec is available on github. The manual is available on readthedocs. Download the version 1.1.2 of pySecDec as pySecDec-1.1.2.tar.gz. The manual is available here. Download version 1.1.1 of pySecDec as pySecDec-1.1.1.tar.gz. The manual is available here. Download version 1.1 of pySecDec as pySecDec-1.1.tar.gz. The manual is available here. The first release version of pySecDec can be downloaded as pySecDec-1.0.tar.gz. The manual is available here. See also the corresponding paper arXiv:1703.09692.

algorithm:	T. Binoth, GH '00
version 1.0:	J. Carter, GH '10
version 2.0:	S.Borowka, J. Carter, GH '12
version 3.0:	S.Borowka, GH, S.Jones, M.Kerner, J.Schlenk, T.Zirke '15
pySecDec:	S.Borowka, GH, S.Jahn, S.Jones, M.Kerner, J.Schlenk, T.Zirke '17

numerical evaluation of multi-loop integrals

http://secdec.hepforge.org https://github.com/mppmu/secdec/releases

SecDec is hosted by Hepforge, IPPP Durham

SecDec

Sophia Borowka, Gudrun Heinrich, Stephan Jahn, Stephen Jones, Matthias Kerner, Johannes Schlenk, Tom Zirke

A program to evaluate dimensionally regulated parameter integrals numerically

home download program user manual faq changelog

NEW! The latest version of pySecDec is available on github. The manual is available on readthedocs. Download the version 1.1.2 of pySecDec as pySecDec-1.1.2.tar.gz. The manual is available here. Download version 1.1.1 of pySecDec as pySecDec-1.1.1.tar.gz. The manual is available here. Download version 1.1 of pySecDec as pySecDec-1.1.tar.gz. The manual is available here. The first release version of pySecDec can be downloaded as pySecDec-1.0.tar.gz. The manual is available here. See also the corresponding paper arXiv:1703.09692.

J. Carter, GH '10
S.Borowka, J. Carter, GH '12
S.Borowka, GH, S.Jones, M.Kerner, New! J.Schlenk, T.Zirke '15 can be used as
S.Borowka, GH, S.Jahn, S.Jones, M.Kerner, J.Schlenk, T.Zirke '17

calculation: building blocks

- amplitude generation with 2 setups (custom made and "GoSam-2loop")
- amplitude reduction with Reduze [C. Studerus, A. v. Manteuffel]
- integrals calculated numerically with SecDec (analytically unknown)
- total number of integrals:
 - before reduction: ~10000, after reduction ~330, after sector decomposition 11244 (3086 non-planar)
 - used finite basis for planar integrals
- real radiation:
- (a) GoSam-1L + Catani-Seymour dipole subtraction
- (b) GoSam-1L + POWHEG

top mass effects

total cross sections at 14 TeV

$\mu_0 = m_{HH}/2$	
--------------------	--

$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	$\sigma_{\rm NNLO}[{\rm fb}]$
$17.07^{+30.9\%}_{-22.2\%}$	$31.93^{+17.6\%}_{-15.2\%}$	$37.52^{+5.2\%}_{-7.6\%}$
$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	
$19.85^{+27.6\%}_{-20.5\%}$	$34.26^{+14.7\%}_{-13.2\%}$	
$19.85^{+27.6\%}_{-20.5\%}$	$32.91^{+13.6\%}_{-12.6\%}$	
	$\sigma_{\rm LO}[\rm fb]$ $17.07^{+30.9\%}_{-22.2\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $19.85^{+27.6\%}_{-20.5\%}$	$\sigma_{\rm LO}[{\rm fb}]$ $\sigma_{\rm NLO}[{\rm fb}]$ $17.07^{+30.9\%}_{-22.2\%}$ $31.93^{+17.6\%}_{-15.2\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $38.32^{+18.1\%}_{-14.9\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $34.26^{+14.7\%}_{-13.2\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $32.91^{+13.6\%}_{-12.6\%}$

PDF4LHC15_nlo_30_pdfas $m_H=125 \text{ GeV}, m_t=173 \text{ GeV}$ uncertainties: $\mu_{R,F} \in [\mu_0/2, 2\,\mu_0]$ (7-point variation) MAX-PLANCK-GESELLSCHAFT HXSWG: $\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \,\sigma_{NLO}^{\text{HEFT}} = 39.64^{+4.4\%}_{-6.0\%}$ $\mu_{L} = 39.64^{+4.4\%}_{-6.0\%}$

top mass effects: energy dependence

	\sqrt{s}	LO [fb]	B-i. NLO HEFT [fb]	NLO FT_{approx} [fb]	NLO [fb]
	14 TeV	$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	$34.26^{+14.7\%}_{-13.2\%}$	$32.91^{+13.6\%}_{-12.6\%}$
	27 TeV	$78.85^{+21.5\%}_{-17.0\%}$	$154.94^{+16.2\%}_{-13.4\%}$	$134.12^{+12.7\%}_{-11.1\%}$	$127.88^{+11.6\%}_{-10.5\%}$
100 TeV 731.3 $^{+20.9\%}_{-15.9\%}$		$731.3^{+20.9\%}_{-15.9\%}$	$1511^{+16.0\%}_{-13.0\%}$	$1220^{+11.9\%}_{-10.7\%}$	$1149^{+10.8\%}_{-10.0\%}$
- Aller and a second	scal	e uncertainties		nreliminary + (0.3 stat. uncertaint

relative difference Born-improved NLO HEFT to full NLO:

- 14 TeV: 16.4%
- 27 TeV: 21.2%
- 100 TeV: 31.5%

Higgs boson pair invariant mass

for large invariant masses:

Born-improved NLO HEFT overestimates by about 50%, FTapprox by about 40% (at 14 TeV, worse at 100 TeV)

top quark loops resolved --> HEFT has wrong scaling behaviour at high energies

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

scaling behaviour

rapidity of the Higgs boson pair

NLO-improved NNLO HEFT

NNLO HEFT:

MAX-PLANCK-GESELLSCHAFT

De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 1606.09519

"NLO-improved NNLO HEFT": [Borowka, Greiner, GH, Jones, Kerner, Schlenk, Zirke 1608.04798]

bin-by-bin rescaling at observable level by NNLO HEFT K-factor

would lead to $\sigma' = 38.56 \, fb$

variation of triple Higgs coupling

minimum near $\,\lambda=2\,$ due to destructive interference between diagrams containing $\,\lambda\,$ and box-type diagrams

degeneracy due to quadratic λ dependence

distributions can discriminate between degenerate λ values

 $\lambda = \lambda_{BSM} / \lambda_{SM}$

variation of triple Higgs coupling

combination with parton showers

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou '17

- avoid evaluation of two-loop amplitude for each phase space point
- two-loop amplitude depends only on $\hat{s}, \hat{t} \quad (m_t, m_H \text{ fixed})$

construct 2-dim grid

variable transformation to achieve more uniform distribution

$$x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} - 2m_{H}^{2}}{\hat{s}\beta(\hat{s})} \right| \quad \beta(\hat{s}) = \sqrt{1 - 4m_{H}^{2}/\hat{s}}$$

combination with POWHEG and MadGraph5_aMC@NLO

POWHEG-BOX-V2: User-Process-V2/ggHH

and Sherpa, S. Jones, S. Kuttimalai '17

combination with parton showers

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou '17

- avoid evaluation of two-loop amplitude for each phase space point
- two-loop amplitude depends only on $\hat{s}, \hat{t} \quad (m_t, m_H \text{ fixed})$

construct 2-dim grid

variable transformation to achieve more uniform distribution

$$x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} - 2m_{H}^{2}}{\hat{s}\beta(\hat{s})} \right| \quad \beta(\hat{s}) = \sqrt{1 - 4m_{H}^{2}/\hat{s}}$$

combination with POWHEG and MadGraph5_aMC@NLO public POWHEG-BOX-V2: User-Process-V2/ggHH

and Sherpa S. Jones, S. Kuttimalai '17

mass effects versus parton shower effects

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou 1703.09252

mass effects versus parton shower effects

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou 1703.09252

shower effects large but order(s) of magnitude smaller than difference to Born-improved HEFT

dependence on shower parameters

compare Pythia6 and Pythia8

other observables

compare fixed order and showered results

compare POWHEG and MG5_aMC@NLO

new default shower starting scale matches onto NLO fixed order at large pThh

combination with Sherpa

S. Jones, S. Kuttimalai '17

 differences in peak region due to different matching algorithms

large pThh region:

MG5_aMC@NLO results within (large) uncertainty bands

Powheg with hdamp=250 not within μ_{PS} variation band; vary hdamp to obtain Powheg uncertainty band

BSM couplings

effective Lagrangian:

see e.g. Contino et al. '10, Buchalla et al. '13

$$\Delta \mathcal{L}_{\text{non-lin}} \supset -m_t \bar{t} t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{2v^2} \right) - c_3 \frac{1}{6} \left(\frac{3M_h^2}{v} \right) h^3 + \frac{\alpha_s}{\pi} G^{a\,\mu\nu} G^a_{\mu\nu} \left(c_g \frac{h}{v} + c_{gg} \frac{h^2}{2v^2} \right)$$

5 modified/BSM couplings

BSM couplings

Gröber, Mühlleitner, Spira, Streicher '15:

calculated effects of dimension 6 operators in Born-improved HEFT

our plan: (Buchalla, Capozi, Celis, GH, Scyboz et al)

calculate effects of BSM couplings based non-linear effective Lagrangian with full top quark mass dependence

use benchmark points of Carvalho, Dall'Osso, Dorigo, Goetz, Gottardo, Tosi '15

Benchmark	κ_{λ}	κ_t	c_2	c_g	c_{2g}
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
\mathbf{SM}	1.0	1.0	0.0	0.0	0.0

Summary & outlook

- Born-improved HEFT approximation fails to describe tails of distributions
- discrepancy grows with energy
- at high energies mass effects more important than shower effects

ToDo:

- combine with NNLO HEFT and NNLL resummation
- combination with Herwig7
- phenomenological study with Higgs boson decays
- implementation of BSM effective couplings/operators

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

MAX-PLANCK-GESELLSCHAFT

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

HEFT: comparison to NNLO

 $h_{
m damp} = \infty$ closer to NNLO at large pTHH $h_{
m damp} = 250 \ {
m GeV}$ closer to NLO at large pTHH

compare fixed order and showered results

leading jet distribution matches onto NLO (one 'hard' emission at ME level)

second jet (generated by the shower) still pretty hard

Looking at tails for Higgs physics...

grid validation

Use HEFT to study validity of grid

Full SM compare POWHEG (grid) with our original results

two-loop integrals

slide by Stephen Jones

Yukawa only (\leq 4-point)

Self-coupling (≤3-point)

Integrals Known $gg \to H$

Spira, Djouadi et al. 93, 95; Bonciani, P. Mastrolia 03,04; Anastasiou, Beerli et al. 06;

Many integrals not known analytically, except: $H \rightarrow Z \gamma$ Bonciani, Del Duca, Frellesvig et al. 15; Gehrmann, Guns, Kara 15;