

WaveCacher and Sampic Workshop

Experience form the HGTD timing application on laboratory and test beam environment

Evangelos –Leonidas Gkougkousis^{1,2}

- 1. Institut de Fisica d'Altes Energies
- 2. Centre Européen de Recherche Nucléaire

Orsay – February 7th, 2018

Overview

Introduction

Sensor testing

ATLAS HGTD

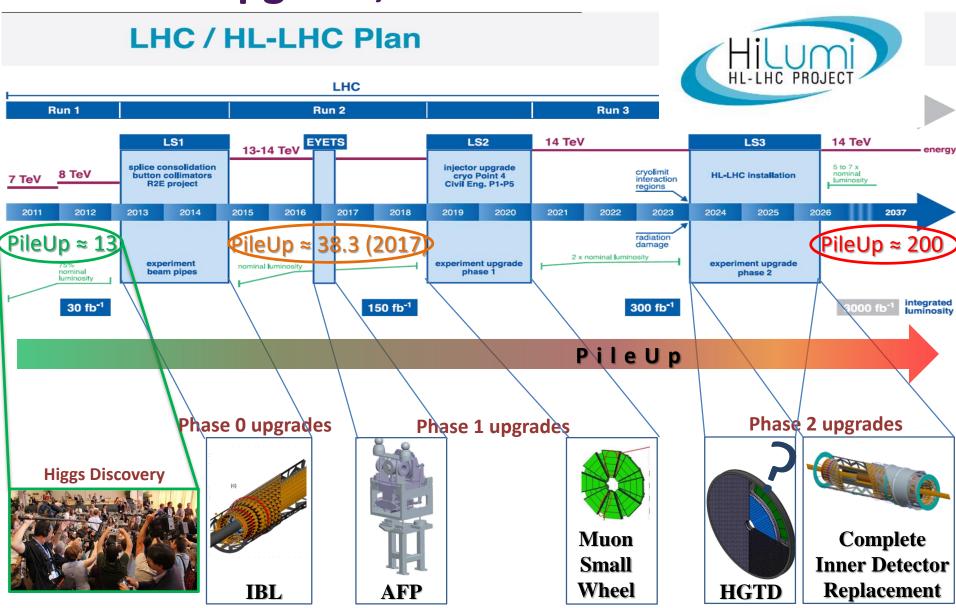
- Upgrades: Towards HL-LHC
- Geometry and integration
- Sensor technology and design

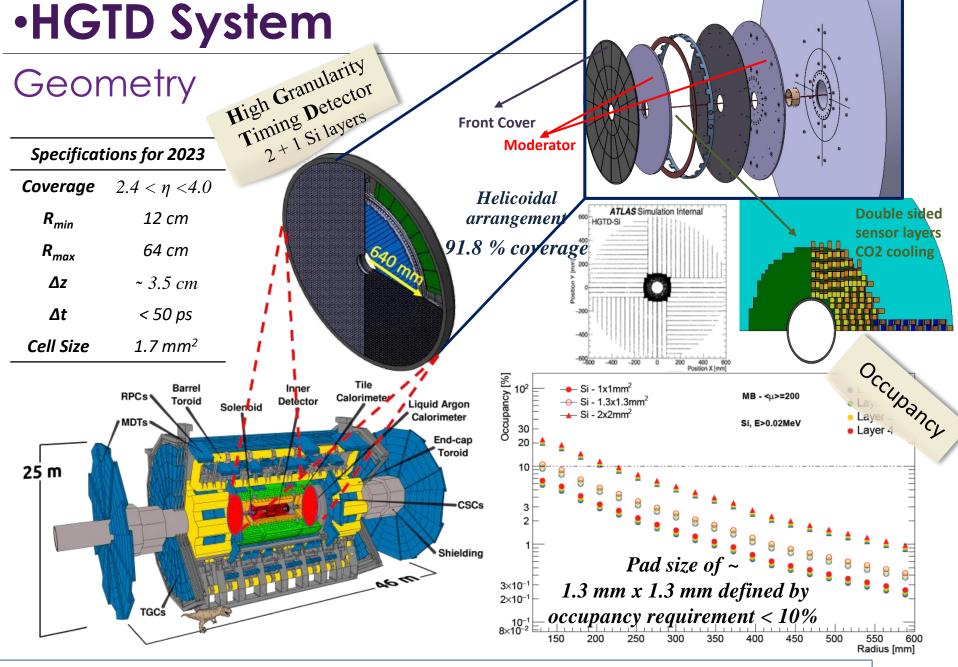
• Time resolution & lab testing

- Test-bench setup Oscilloscope vs SAMPIC
- Rise time, pulse shapes and time resolution
- Sampic trigger time correction
- Beta run results

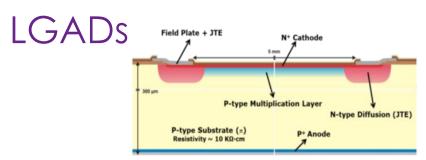
Testbeams

- Typical Setup
- Sampic Trigger time and integration

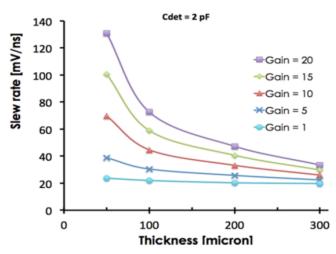

Conclusions


Test beam

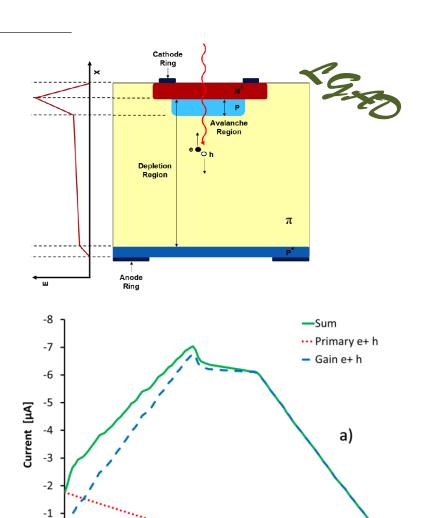
case


• Suggestions and outlook

Phase 2 Upgrade, towards HL-LHC



Sensors



Low Gain Avalanche Diodes (LGAD)

- ✓ Primary technology for ATLAS CMS
- ✓ Secondary implant introducing moderate gain
- ✓ HPK, CNM, FBK & Micron producing

H.-W. Sadrozinski, A. Seiden and N. Cartiglia, 2817 4-Dimensional Tracking with Ultra-Fast Silicon Detectors, arXiv: 1704.08666.

F. Cenna et al., Weightfield2: A fast simulator for silicon and diamond solid state detector, 2822 Nucl. Instrum. Meth. A796 (2015) 149.

0.4

0.6

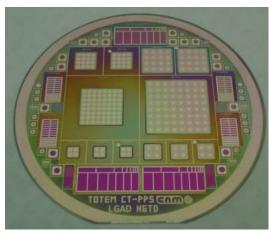
0.2

0.0

1.2

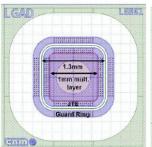
0.8

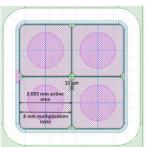
1.0


Time [ns]

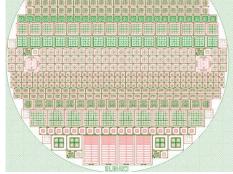
Sensors

Fabrication


Technology development and initial productions for R&D done at CNM (Barcelona)


- Productions in collaboration with Totem (CMS) and RD50
- Now FBK (Italy) and HPK (Japan) also producing LGAD sensors

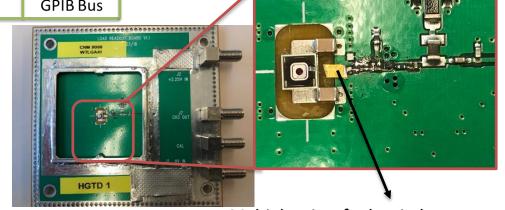
- 4" SOI wafers
- 50 μm thickness on 300 μm support wafer
- Different implantation doses
- Various structures including:
 - Pad diodes of 1.3x1.3 mm²
 - 2x2 arrays of 2x2 and 3x3 mm² pads
 - Larger structures for different applications


Single Diode

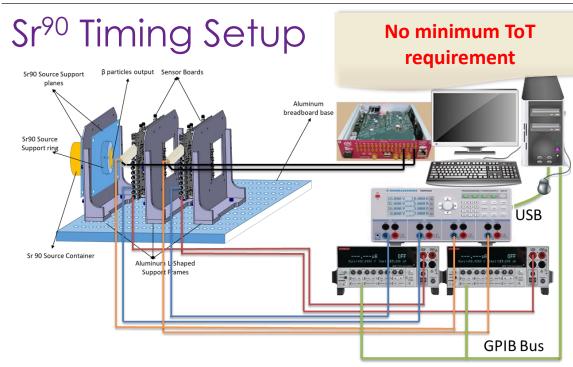
Ex2 array

Specific HGTD wafers

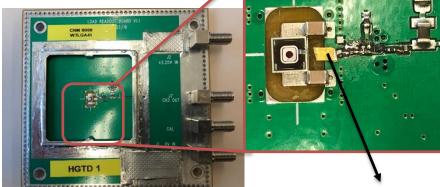
- 6" Si-on-Si wafers
- 50 μm thickness on 250 μm support wafer
- Different implantation doses including Gallium and Carbon
- Various structures including:
 - Pad diodes of 1.3 x 1.3 mm
 - 2x2 arrays of 1 x 1 mm pads
 - 5 x 5 arrays of 1 x 1 mm pads


Lab tests

Sr ⁹⁰ Timing Setup	Minimum ToT to trigger depends on scale!!
Sr 90 Source Container Aluminum L Shaped Support Frames	Substitution of the state of th
	CDID Due

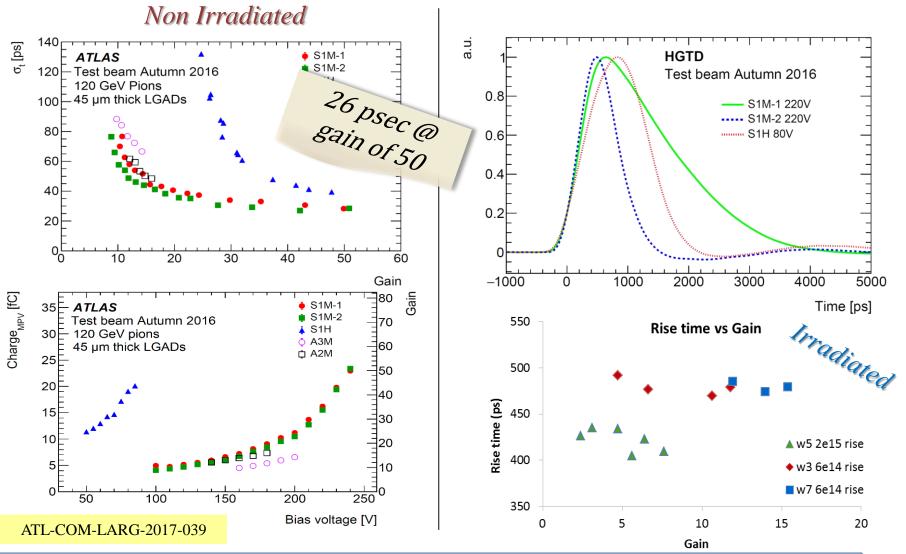

Board type	Sampic	LeCroy WR
Channels	16	4
Sampling Rate	8.4Gs/sec	20 Gs/sec
Impedance	50 Ω	50 Ω
Connectors	MCX, SMA, USB, Ethernet	BNC, USB, GPIB slave
Bandwidth	1.6GHz	5GHz
Resolution	8 – 11 bit	8 bit (11 tough fit)
Dynamic Range	1V	Scale dependent

- High frequency SiGe (~2GHz) common emitter first stage charge amplifier (470 Ohm transimpedance)
- Integrated commercial second stage GaAs microwave voltage amplifier (gain of 10, 500hm line)
- Mean sensor + amplifier noise < 2.5 mV
- Use of identical sensors for calibration and comparison (Run 9088, W5LGAxx 1.3mm)

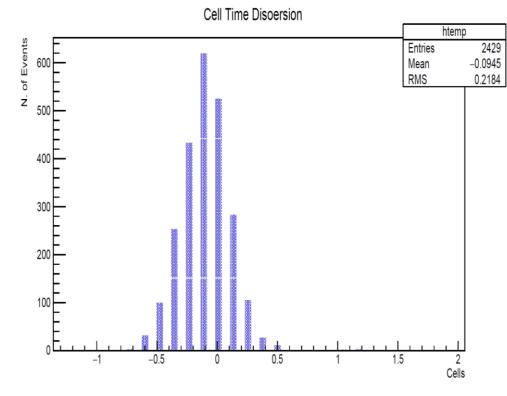

Multiple wires for low inductance 0201 smd components for low parasitic

Lab tests

Con	Minimum Diguration	
Board type	Sampic	LeCroy WR
Channels	16	4
Sampling Rate	8.4Gs/sec	20 Gs/sec
Impedance	50 Ω	50 Ω
Connectors	MCX, SMA, USB, Ethernet	BNC, USB, GPIB slave
Bandwidth	1.6GHz	5GHz
Resolution	8 – 11 bit	8 bit (11 tough fit)
Dynamic Range	1V	Scale dependent


- High frequency SiGe (~2GHz) common emitter first stage charge amplifier (470 Ohm transimpedance)
- Integrated commercial second stage GaAs microwave voltage amplifier (gain of 10, 500hm line)
- Mean sensor + amplifier noise < 2.5 mV
- Use of identical sensors for calibration and comparison (Run 9088, W5LGAxx 1.3mm)

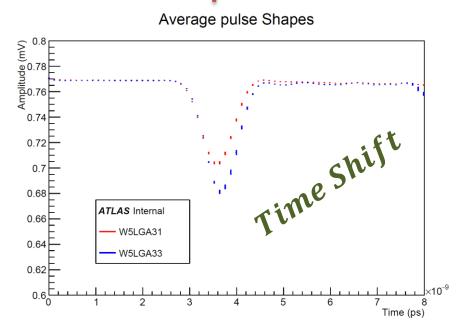
Multiple wires for low inductance 0201 smd components for low parasitic


Expected Results

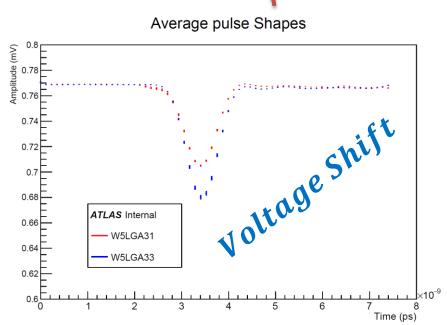
Pulse specifications

Sampic Runs

Trigger time correction


2 LGAD Run		
Channels	2	
Sampling Rate	8512 MS/s	
Sampling time	117 psec	
Acquisition window	7.52 nsec	

- Time bin of 117 psec too large to see trigger delays
- Both channels should trigger simultaneously
- Trigger time between the two channels presents a Gaussian peeked at 0


Time for each channel needs to be recalibrated with respect to a channel of reference

Sampic Runs

Trigger Time Corection Tow possible correction methods

- Assume that reference channel start always at 0
- Adjust the start time of additional channels to compensate trigger time mismatch

- Assume all channels start at 0
- Shift voltage values to any of the channels to the end of the waveform to compensate for trigger mismatch
- Works for small mismatches

Sampic Runs

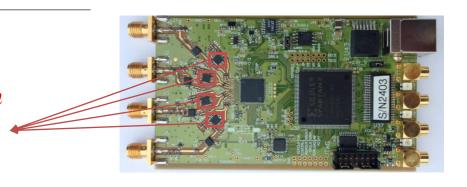
Time resolution results

Both methods give similar results:

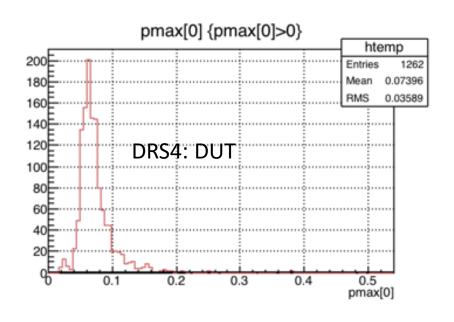
- Linear fit 20% 80% analysis on rising edge
- Results may be improved by global fit on pulse shape
- Not more than 10 % 20 % improvement

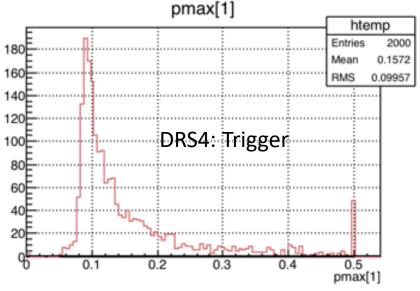
2 LGAD Run		
Time resolution	40 psec (26 psec with oscilloscope)	
Jitter	34 psec	

Trigger:

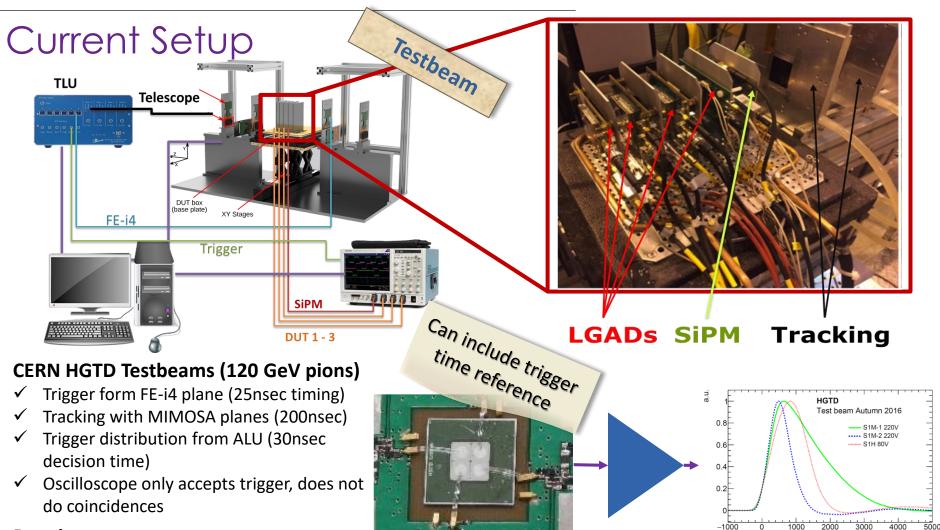

- Self trigger on either channels
- No coincidence implementation
- No internal buffer, no opportunity for combined trigger with tracker
- Only independent operation possible

2 LGAD Run			
Registered Events	2452860		
Coincidences	2429		
Efficiency	0.1 %		
Thresholds	20 mV		
Trigger Mode	Self Trigger		


Other Solutions


DRS4 - Capacitor arrays

Ti discriminator with a 1.2 nsec minimum ToT requirement



• For the DRS4 the set-up time is 1.2 ns, i.e. 6 time bins. So the data we took at 20 mV threshold gave only pulses with pulse height above 80mV: can't evaluate the timing resolution of DRS4 for our present amp which minimizes the pulse width.

Test beam case

Requirements

- ✓ Able to support the 55nsec delay.
- ✓ Implement busy (veto) for MIMOSA redout

Sensor

Amplification

Oscilloscope

Test beam case

Sampic integration requirements

- ✓ Tow possible trigger scenarios
 - ✓ Have a 60 nsec buffer to wait for trigger decision from EUDAQ
 - ✓ Do a first level coincidence trigger and have a hold-off time of 60 nsec to wait a TLU decision
 - ✓ Since no minimum ToT requirement, second case more promising
- ✓ Need a Veto function to wait for the MIMOSA readout time
- ✓ Develop C/C++ libraries for integration with EUDAQ framework and universal data acquisition and monitoring
- ✓ Implement the time trigger correction within the EUDAQ framework and applied before data store on the fly
- ✓ Increase rate to 10Gs/sec to avoid degrading time resolution, current state may be corrected via signal fit

Conclusions

Suggestions and Outlook

- ✓ Need a multi-channel fast read-out for future test beam and lab measurements
- ✓ Sampic initial results demonstrate 40psec resolution with possibility of 10-20% improvement
- ✓ In lab implementations need coincidence trigger and 10Gs/s rate
- ✓ Testbeam implementation requires hold-off time, veto and coincidence implementation, C/C++ libraries
- ✓ Very promising multichannel solution because of no minimum ToT for trigger