Dynamique de faisceau dans le Linac et la TL

Linac : C. Bruni, S. Chancé, L. Garolfi, H. Purwar, A. Bacci, J. Haissinski

Rf input : P. Lepercq, M. Elkhaldi

Magnetic field input : C. Vallerand

Laser input : V. Soskov

TL : A. Loulergue, A. Gamelin, C. Bruni, S. Chancé, M. Biagini, H. Guler

Mecanics : A. Gonnin, D. Auguste

Programme Investissements d'avenir de l'Etat ANR-10-EQPX-51. Financé également par la Région Ile-de-France. Program « Investing in the future » ANR-10-EQOX-51. Work also supported by grants from Région Ile-de-France.

Outline

- Plan général linac, ligne injection/extraction
- Résumer des problématiques présentées au MAC
- Nouveau schema d'implantation des bobines de focalisation
- Etudes de tolérances de l'alignement des solénoïdes
- Optique linéaire en schema injection ou non dans l'anneau
- Sorting des quadrupoles pour la TL
- Prévisions avec la section fort gradient 50 MeV/70 MeV

Simulations du linac (Astra)

Placement initial du solénoide « collés » (TDR)

- Objectif : conserver une émittance de l'ordre de 5 pi mm mrad en fin de TL afin de préserver le flux spectral des rayons X
- Possible d'avoir 5pi en sortie du linac mais avec une dispersion en énergie élevée

Laser duration	4ps		2ps		
Laser transverse dimension (mm)	0.6	0.5	0.4	0.6	0.5
Transverse emittance (pi mm mrad)	8	6	5	7	5
Energy spread (%)	0.55	0.65	1	0.45	0.65
Bunch duration (ps)	4.5	4.8	5.7	3.5	4

Impact de la dispersion en énergie dans la ligne de transfert

Nouvelles simulations dans 50 MeV, section LIL

Optimisation avec un algorithme génétique GIOTTO – Alberto Bacci

Baisser l'émittance tout en conservant des fonctions beta de l'ordre de 30m, tout en essayant de rejoindre la dispersion en énergie de 0.3%

Mesures magnétiques des quadrupole Sorting des quadrupoles (TL)

quad	B3	B6	B10	A3
Colonne1	Colonne2	Colonne3	Colonne4	Colonne5
#30	_16	_24	_21	4
#1	_9	_21	_24	10
#3	_2	_20	_23	_4
#4	_1	_20	_26	5
#10	2	_23	_25	_2
#34	5	_21	_23	8
#11	6	_19	_25	9
			•	

Terme sextupolaire qui peut compenser les dégradations d'émittance par effet chromatique (dispersion en énergie) Regarder l'effet de toutes les combinaisons possibles sur l'émittance

Emittance selon les cas

ITONA

Emittance selon les cas

ITONA

Arrangements des quadrupoles de la TL

Magnet sorting for the ThomX TL

LIGNE TRANSFERT (TL) Implantation éléments version 2.9

17_oct_17

TL – QP

Girder	ler A Girder D		D	Girder F		Girder H	
Nomenclature	Serial number	Nomenclature	Serial number	Nomenclature	Serial number	Nomenclature	Serial number
Quad TL/AE/QP.01	# 03	Quad TL/AE/QP.04	# 11	Quad TL/AE/QP.05	# 34	Quad TL/AE/QP.06	# 10
Quad TL/AE/QP.02	# 01					Quad TL/AE/QP.07	# 33
Quad TL/AE/QP.03	# 30						

		TL – DP				
Girder B		Girde	r G	Girder J		
Nomenclature	Serial number	Nomenclature	Serial number	Nomenclature	Serial number	
Dip TL/AE/DP.01	# 02	Dip TL/AE/DP.03	# 10	Dip RI-C2/AE/DP.01	?	
Dip TL/AE/DP.02	# 14	Dip TL/AE/DP.04	# 03			

Conclusion

- Nouveau positionnement de la bobine de focalisation permet de limiter les dégradation dans la TL, et d'améliorer l'émittance en sortie du linac
- Motorisation de l'alignement des solénoïdes
- La mise à jour des simulations ouvrent des perspectives pour les simulations start 2 end combinées à l'anneau
- La section à fort gradient permet de conserver les propriétés du faisceau obtenues avec la section LIL
- ▶ Première prises de données sur CLEAR au CERN (canon ThomX + bobines + sections LIL) → comparaisons avec les simulations en cours