

Dynamique faisceau dans l'anneau de stockage

Alexis Gamelin¹, Marica Biagini¹, Christelle Bruni¹, Iryna Chaikovska¹, Sophie Chancé¹, Nicolas Delerue¹, Mohamed El Khaldi¹, Luca Garolfi¹, Hayg Guler¹, Jacques Haissinski¹, Damien Le Guidec¹, Pierre Lepercq¹, Alexandre Loulergue², Hugues Monard¹, Harsh Purwar¹, Cynthia Vallerand¹

¹Laboratoire de l'Accélérateur Linéaire (LAL) ²Synchrotron SOLEIL

Buts de l'étude

<u>Quoi</u>

• Nous cherchons à minimiser la dégradation du faisceau due aux effets collectifs dans l'anneau de stockage de ThomX.

<u>Pourquoi</u>

• En l'absence d'amortissement, les dégradations du faisceau entrainent une baisse du flux total et spectral des X.

Comment

• En comprenant et en simulant ces effets collectifs et en utilisant des stratégies de minimisation de ces effets.

• Champ de sillage et impédances (RW and géométrique)

• Charge d'espace (SC)

• Rayonnement synchrotron cohérent (CSR)

• Diffusion intra-faisceau (IBS) / Touschek

- , État initial Impédance Z(ω) Courant I(w) р₁ p₂ Rétrodiffusion Compton (CBS) Charge d'espace (SC) Présentation d'aujourd'hui -√√/∖/∖∩ photon (uniquement 15 min ...) $E-\Delta E$ Rayonnement synchrotron cohérent (CSR)
- Champ de sillage et impédances (RW and géométrique) ٠

Alexis Gamelin

Courant image

•

•

Diffusion intra-faisceau (IBS)

, État final

hν

hv'

Nuage d'ions

٠

Impédance géométrique

Alexis Gamelin

Image from www.cst.com

Impédance géométrique / Impédance CSR

Alexis Gamelin

Image from www.cst.com

Coherent Synchrotron Radiation (CSR)

short bunch $\sigma < \lambda$

- Impédance CSR du vide
- Impédance CSR de plaques parallèles

Pour une charge ponctuelle se déplaçant dans le vide sur un cercle de rayon R, l'impédance en régime permanent est donnée par :

- Impédance CSR du vide
- Impédance CSR de plaques parallèles

Pour une charge ponctuelle se déplaçant entre deux plaques conductrices dans le plan horizontal sur un cercle de rayon R, l'impédance en régime permanent est donnée par :

Ces modèles analytiques sont très utiles car général mais ils négligent toute une série d'effets qui peuvent avoir un impact :

• Effets transitoires

Dans une machine réelle, il y a des section droites entre les dipôles. On n'est pas dans le cas d'un régime permanant de rotation autour d'un axe

- Taille transverse du faisceau
- Ecrantage transverse
- Résonnance du champs CSR dans un dipôle
- Interférences entre les champs CSR

Ces modèles analytiques sont très utiles car général mais ils négligent toute une série d'effets qui peuvent avoir un impact :

• Effets transitoires

Dans une machine réelle, il y a des section droites entre les dipôles. On n'est pas dans le cas d'un régime permanant de rotation autour d'un axe

• Taille transverse du faisceau

Le faisceau n'est pas infiniment fin en transverse

- Ecrantage transverse
- Résonnance du champs CSR dans un dipôle
- Interférences entre les champs CSR

Ces modèles analytiques sont très utiles car général mais ils négligent toute une série d'effets qui peuvent avoir un impact :

• Effets transitoires

Dans une machine réelle, il y a des section droites entre les dipôles. On n'est pas dans le cas d'un régime permanant de rotation autour d'un axe

• Taille transverse du faisceau

Le faisceau n'est pas infiniment fin en transverse

• Ecrantage transverse

Réflexions possibles du champs CSR sur la chambre à vide du faisceau pouvant provoquer des interaction tête-queue ou queue-tête

- Résonnance du champs CSR dans un dipôle
- Interférences entre les champs CSR

Ces modèles analytiques sont très utiles car général mais ils négligent toute une série d'effets qui peuvent avoir un impact :

• Effets transitoires

Dans une machine réelle, il y a des section droites entre les dipôles. On n'est pas dans le cas d'un régime permanant de rotation autour d'un axe

• Taille transverse du faisceau

Le faisceau n'est pas infiniment fin en transverse

• Ecrantage transverse

Réflexions possibles du champs CSR sur la chambre à vide du faisceau pouvant provoquer des interaction tête-queue ou queue-tête

Résonnance du champs CSR dans un dipôle

Certains modes peuvent être excité par le faisceau et dominer l'impédance CSR

• Interférences entre les champs CSR

Ces modèles analytiques sont très utiles car général mais ils négligent toute une série d'effets qui peuvent avoir un impact :

- Effets transitoires Dans une machine réelle, il y a des section droites entre les dipôles. On n'est
 - Taille transverse du faisceau

pas dans le cas d'un régime permanant de rotation autour d'un axe

Le faisceau n'est pas infiniment fin en transverse

• Ecrantage transverse

Réflexions possibles du champs CSR sur la chambre à vide du faisceau pouvant provoquer des interaction tête-queue ou queue-tête

Résonnance du champs CSR dans un dipôle

Certains modes peuvent être excité par le faisceau et dominer l'impédance CSR

• Interférences entre les champs CSR

Les champs CSR émis dans chaque dipôles peuvent interagir et interférer

Impédance normalisée par le nombre de dipôles pour comparaison :

L'interaction ion-faisceau

- Les molécules résiduelles du vide sont ionisées par le passage du faisceau.
- Un ion va subir une déflection de vitesse $\Delta \vec{v}$ lors de chacune de ses interactions avec le faisceau.
- L'ion va alors effectuer de très fortes oscillations transverses de part et d'autre de l'axe du faisceau.
- Mais il va aussi subir des déflections longitudinales qui peuvent s'accumuler sur des milliers de tours.

Alexis Gamelin

NUAGE simulation, number of macro ions at start : 100 000

NUAGE simulation, number of macro ions at start : 100 000

NUAGE simulation, number of macro ions at start : 100 000

NUAGE simulation, number of macro ions at start : 100 000

NUAGE simulation, number of macro ions at start : 100 000

NUAGE simulation, number of macro ions at start : 100 000

Stratégie et développements

Merci !

Impact sur la dynamique faisceau

Bunch at injection :

Charge = 100 pC

 $\sigma_s =$ 6,6 ps

 σ_{δ} = 0,2 %

Simulation de principe : 10 000 particules avec CSR plaques parallèles 100 tours à l'injection

Impact sur la dynamique faisceau

Injection sans adaptation

Injection sans adaptation

Injection sans adaptation

1000 tours Avec CSR, charge d'espace et impédances SC3D : 1 - RW : 0 - CSR : 1 - BB : 0 - WM : 1 N_{turn} : 1000 1000 tours 160 0.015 140 0.01 0.02 Explosion du paquet 120 Relative Energy 0 10'0' 0.005 0.01 100 Instabilité due au CSR 0 de/e $CSR \propto N^2$ 80 -0.005 60 -0.01 40 -0.02Paquet à l'injection : -0.015 20 Charge = 1 nC -0.05 0.05 0 $\sigma_s = 6,6 \text{ ps}$ -0.02 Longitudinal position S (m) σ_{δ} = 0,2 % -0.02-0.01 0.01 0.02 0.03 0 s (m)

Alexis Gamelin

Avec CSR, charge d'espace et impédances