

ATLAS Results on H(125) Bosons Decays

Toni Baroncelli INFN Sezione Roma TRE On the behalf of the ATLAS Collaboration

Outline of the talk

Higgs physics in di-boson final states: Overview of the (so far) ATLAS Run-2 measurements in WW*/ZZ*/γγ decay channels (36 fb⁻¹,80 fb⁻¹) production inclusive & ttH –enhanced 80 fb⁻¹ New!

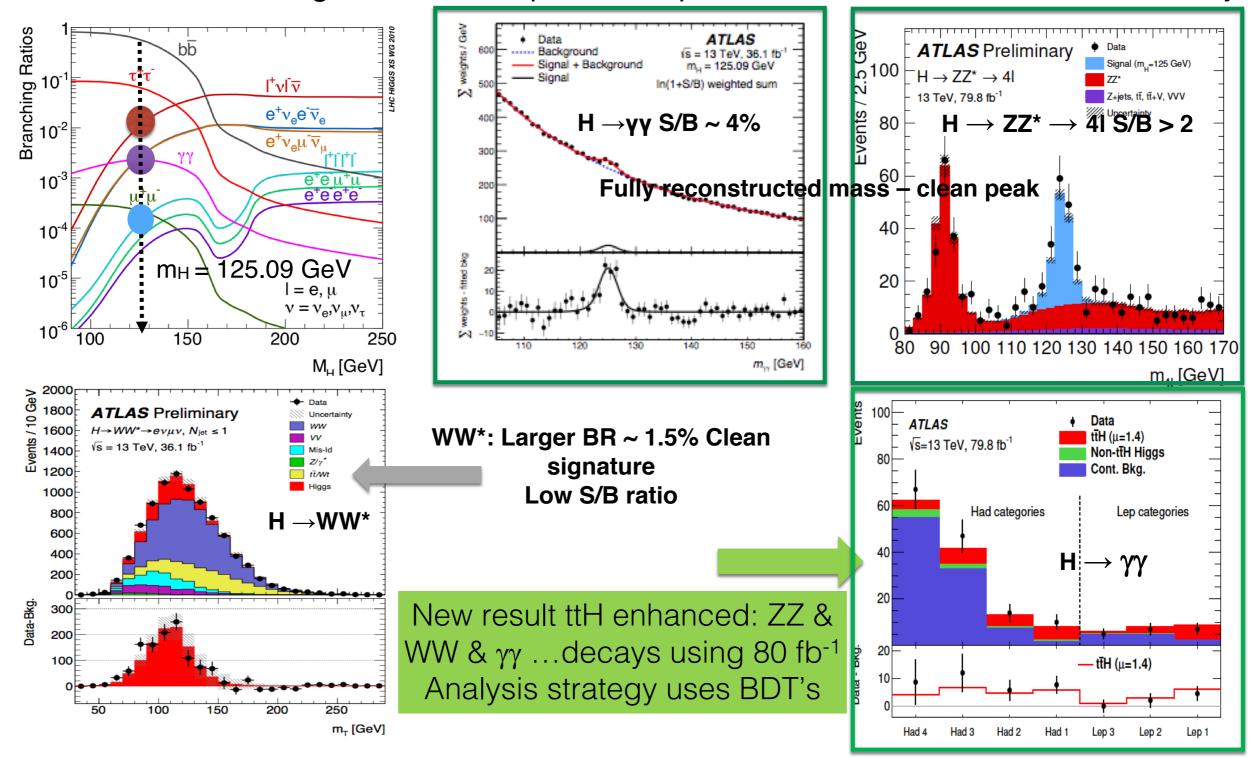
Higgs boson cross-sections, which?

Fiducial inclusive and Differential, Total, Production, Simplified Template Cross

Sections (STXS)

Decay Process	Н→үү	H→ZZ*→4l	H→WW*→eνμν	ttH→ZZ*/γγ	ttH-→Multileptons
∫Ldt(fb-1), cms energy	79.8, √s=13TeV	79.8, √s=13TeV	36.1, √s=13TeV	up to 79.8, √s=7,8,13TeV	36.1, √s=13TeV
Document	ATLAS-CONF- 2018-028	ATLAS-CONF- 2018-018	ATLAS-CONF- 2018-004	arXiv:1806.00425	Phys. Review Letters D 97, 072003 (2018)
Fiducial integrated cross- sections	~	▼			
Fiducial differential cross- sections	~	▼			
STXS	~	▼			
Total			▼	▼	▽

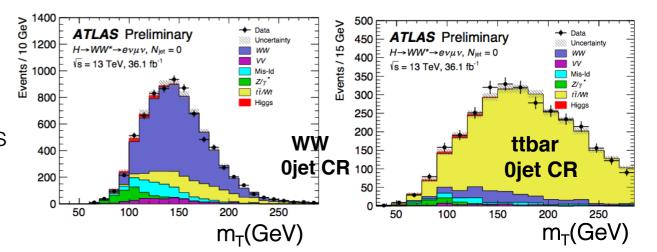
Remarks and Conclusions


Combination: talk by Daniela Rebuzzi

Higgs boson measurements in diboson final states

Despite the low branching fraction of H → WW*(→lvlv)/ZZ*(4l)/γγ, these decays channels have a clean signature and constitute a powerful tool for many Higgs boson properties measurements. Use good isolated leptons and photons, invariant & transverse mass & jets

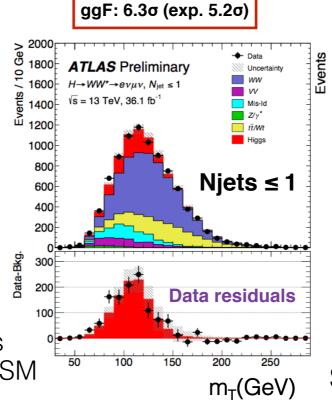
H→WW*→evµv - Analysis

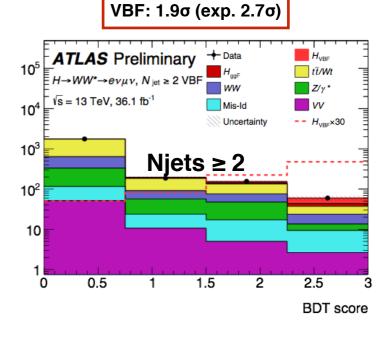

Analysis strategy in brief

ATLAS-CONF-2018-004

Recent result!

- **Signature:** two prompt isolated leptons (close-by leptons) and (loose) missing momentum
- Events split in 3 major Signal Regions on Njets(*): b-jet veto in all categories to reduce ttbar
 - Njet = 0 and Njet = 1 (ggF dominated)
 - m_T used as discriminant
 - Njet ≥ 2 (VBF dominated)
 - BDT used as discriminant
- Irreducible backgrounds data-normalized via CRs
- Mis-identified leptons fully data-driven


(*) complete event selection table in backup



- Simultaneous SRs and CR max likelihood fit
 - 8 SR regions defined for Njet = 0 & 1:
 - Different bkg composition
 - Enhance sensitivity
 - mT shape fit with 8(6) for Njet=0(1)

$$[2 \times m_{ll}] \cdot [2 \times p_T^{sub-leading}] \cdot [e\mu/\mu e]$$

- 4 BDT bins for VBF enriched category
 - S(VBF)/B ~0.6 in the last bin
- ⇒ extract both ggF and VBF cross-sections
- Other production/decays modes fixed to SM

Signal fraction at best 14%

H→WW*→evµv - Results

Signal strength and cross-section results:

Run-2

Run-1

$$\mu_{\text{ggF}}$$
 = 1.21^{+0.12}_{-0.11}(stat.)^{+0.18}_{-0.17}(sys.) = 1.21^{+0.22}_{-0.21}
 μ_{VBF} = 0.62^{+0.30}_{-0.28}(stat.) ± 0.22(sys.) = 0.62^{+0.37}_{-0.36}

$$\mu_{ggF} = 1.02^{+0.29}_{-0.26}$$
 $\mu_{VBF} = 1.27^{+0.53}_{-0.45}$

$$\sigma_{\text{ggF}} \cdot \mathcal{B}_{H \to WW^*} = 12.6^{+1.3}_{-1.2}(\text{stat.})^{+1.9}_{-1.8}(\text{sys.}) \text{ pb} = 12.6^{+2.3}_{-2.1} \text{ pb}$$

$$\sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*} = 0.50^{+0.24}_{-0.23}(\text{stat.}) \pm 0.18(\text{sys.}) \text{ pb} = 0.50^{+0.30}_{-0.29} \text{ pb}.$$

Predicted cross-sections:

ggF 10.4±0.6 pb VBF 0.81±0.02

68% and 95% CL contours

Best fit

1σ compatible

with SM predictions

0.0

-0.5

ATLAS Preliminary

 $\sigma_{qqF} \cdot \mathcal{B}_{H\to WW^*}$ [pb]

 \sqrt{s} =13 TeV, 36.1 fb⁻¹

Uncertainties on the cross-sections measurement:

Significant uncertainties from Theory:

- ~5% on σ_(ggF) due to WW background modelling
- 15% on σ_(VBF) due to QCD scale on ggF in VBF phase space

Limited MC statistics important especially in VBF **σ**(ggF) dominated by systematics (exp~theo)

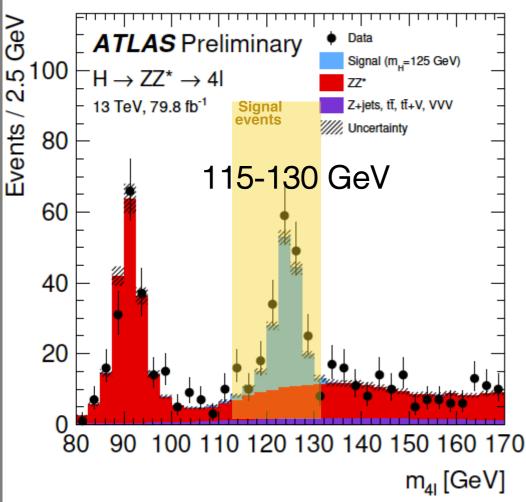
precision of the measurements

Source	$rac{\Delta \sigma_{ m ggF}}{\sigma_{ m ggF}} \left[\% ight]$	$\frac{\Delta \sigma_{\mathrm{VBF}}}{\sigma_{\mathrm{VBF}}}$ [%]
Data statistics	±8	±46
CR statistics	±8	±9
MC statistics	± 5	± 23
Theoretical uncertainties	±8	± 21
ggF $signal$	± 5	± 15
VBF signal	<1	± 15
WW	± 5	± 12
Top-quark	± 4	± 4
Experimental uncertainties	±9	±8
b-tagging	± 5	± 6
Pile-up	± 5	± 2
Jet	± 3	± 4
Electron	± 3	<1
Misidentified leptons	± 5	± 9
Luminosity	± 2	± 3
TOTAL	± 17	± 59
		_

Higgs boson cross-section measurements: Nomenclature

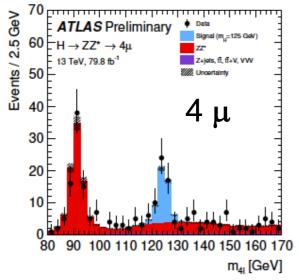
In Run-2 different Higgs boson cross-section measurements considered:

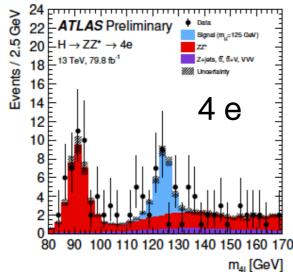
 fiducial cross-sections(inclusive & differential): Measured in fiducial volume to avoid model-dependent extrapolations → only correct for inefficiencies & reconstruction effects

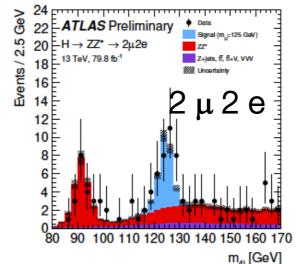

- Simplified Template Cross Section framework* (STXS)): simple fiducial region definitions matching specific experimental categories (ggF 0jets, etc..), allows to reduce theoretical uncertainties (*)
- Total cross-section: extrapolate to full phase space and combine channels

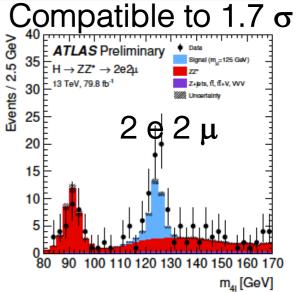
(*) LHC Higgs X-Sec WG: : 4 [arXiv:1610.07922]

$H \rightarrow ZZ^* \rightarrow 4I$ inclusive and differential cross-section ATLAS-CONF-2018-018

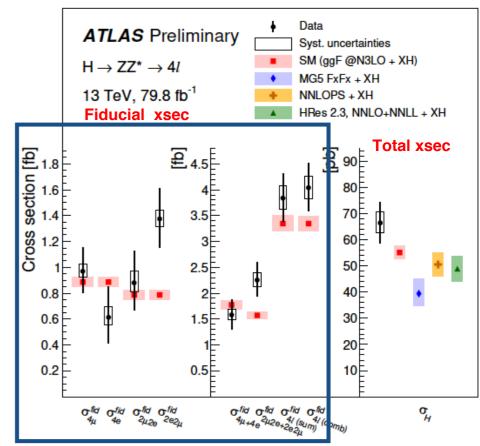


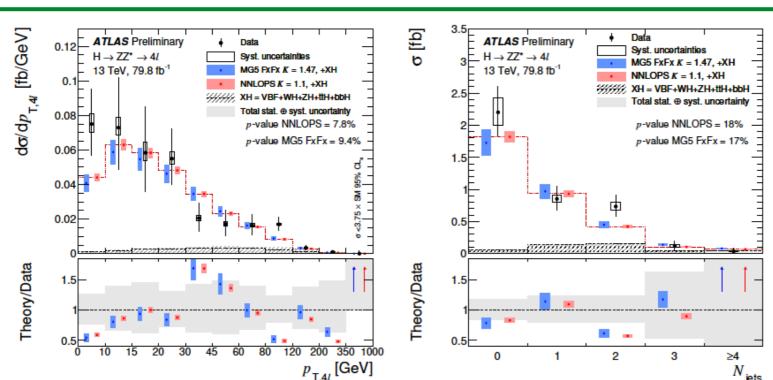



Use template mass distributions for signal & background to fit m4l for each decay channel or differential distributions to extract N_{Signal}


Background mostly by non resonant ZZ* production. Normalization of background shape checked using special control region

Expected and observed events in the							
mass window 115 < m4l < 130 GeV							
Final	Signal	ZZ*	Other	Total	Observed		
state		background	backgrounds	expected			
4μ	40.5 ± 1.7	19.0 ± 1.1	1.71 ± 0.10	61.2 ± 2.0	64		
2e2μ	28.2 ± 1.2	13.3 ± 0.8	1.38 ± 0.10	42.8 ± 1.4	64		
2μ2e	22.1 ± 1.4	9.2 ± 0.9	2.99 ± 0.09	34.3 ± 1.7	39		
4 <i>e</i>	21.1 ± 1.4	8.6 ± 0.8	2.90 ± 0.09	32.5 ± 1.6	28		
Total	112 ± 5	50 ± 4	8.96 ± 0.12	171 ± 6	195		




$H \rightarrow ZZ^* \rightarrow 4I$ inclusive and differential cross-section ATLAS-CONF-2018-018

Cross section [fb]	Data	(± (stat.)	± (syst.))	Standard Model prediction	<i>p</i> -value [%]
$\sigma_{4\mu}$	0.97	±0.17	±0.05	0.886 ± 0.039	62
σ_{4e}	0.61	±0.21	±0.07	0.886 ± 0.039	25
$\sigma_{2\mu 2e}$	0.88	±0.21	± 0.08	0.786 ± 0.035	66
$\sigma_{2e2\mu}$	1.37	±0.22	±0.07	0.786 ± 0.035	0.3
$\sigma_{4\mu+4e}$	1.58	±0.27	±0.10	1.77 ± 0.07	51
$\sigma_{2\mu 2e+2e2\mu}$	2.26	±0.31	±0.13	1.57 ± 0.06	2.4
$\sigma_{ m sum}$	3.84	±0.41	±0.23	3.35 ± 0.15	27
$\sigma_{ m comb}$	4.04	±0.41	±0.22	3.35 ± 0.15	12
$\sigma_{ m tot}$ [pb]	67.2	±6.8	±4.1	55.7 ± 2.5	13

p_{TH}-> test perturbative QCD

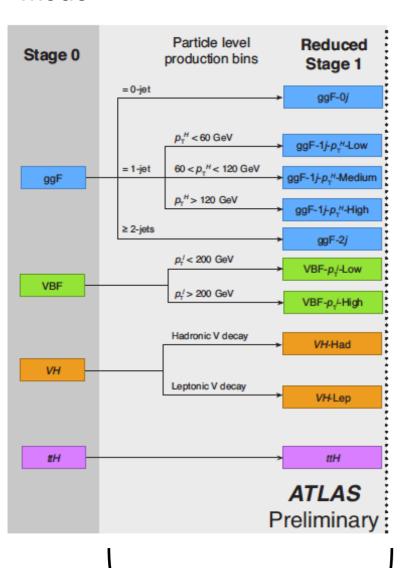
Njets—> test modelling of radiations at high p_T, sensitive to prod modes

Overall good theoretical description of data. Precision statistically limited

Combined inclusive fiducial xsec:

$$\sigma_{fid,comb} = 4.04 \pm 0.41(stat) \pm 0.22(syst)fb$$

 $\sigma_{fid,SM} = 3.35 \pm 0.15fb$


Categorization of ZZ events & Simplified Template Cross Sections

Categories based on particle-level events by dedicated generators

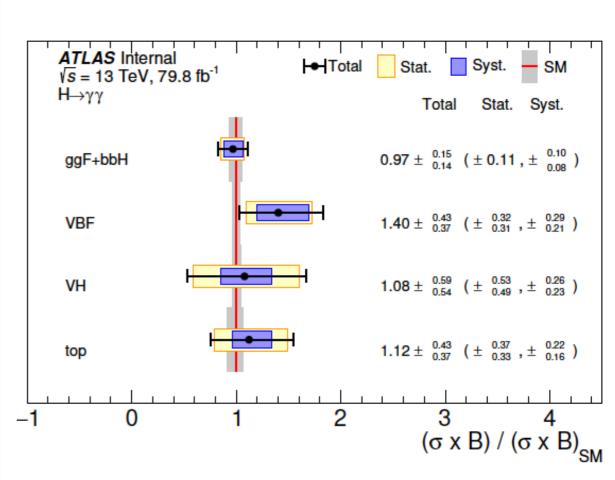
Reconstruction categories in data

Higgs production mode

—								
Production bin	Cross se	$(\sigma \cdot \mathcal{B})/(\sigma \cdot \mathcal{B})_{\text{SM}}$						
	SM expected	Observed	Observed					
Reduced Stage-1 production bins, $ y_H < 2.5$								
ggF-0 <i>j</i>	0.72 ± 0.05	$0.85 \pm 0.14 \pm 0.08$	$1.19 \pm 0.20 \pm 0.10$					
ggF-1 j - p_{T}^{H} -Low	0.170 ± 0.020	$0.09 \pm 0.09 \pm 0.04$	$0.5 \pm 0.5 \pm 0.3$					
ggF-1 j - p_{T}^{H} -Med	0.120 ± 0.020	$0.11 \pm 0.06 \pm 0.02$	$0.95 \pm 0.51 \pm 0.13$					
ggF-1 j - p_{T}^{H} -High	0.024 ± 0.005	$0.007 \pm 0.026 \pm 0.006$	$0.3 \pm 1.1 \pm 0.3$					
ggF-2 <i>j</i>	0.140 ± 0.030	$0.16 \pm 0.10 \pm 0.03$	$1.15 \pm 0.76 \pm 0.26$					
VBF- p_{T}^{j} -Low	0.0872 ± 0.0027	$0.22 \pm 0.09 \pm 0.02$	$2.6 \pm 1.0 \pm 0.2$					
VBF- p_{T}^{j} -High	$0.0041^{+0.0004}_{-0.0002}$	$0.03 \pm 0.02 \pm 0.01$	$7.4 \pm 6.0 \pm 0.7$					
VH-Had	$0.0359^{+0.0019}_{-0.0033}$	$0.02 \pm 0.10 \pm 0.01$	$0.6 \pm 2.9 \pm 0.3$					
VH-Lep	$0.0165^{+0.0008}_{-0.0014}$	$0.04 \pm 0.03 \pm 0.01$	$2.5 \pm 2.1 \pm 0.1$					
ttH	$0.0154^{+0.0011}_{-0.0016}$	< 0.06	< 4.02					

Exclusive bins in Higgs production

H→γγ fiducial inclusive and differential cross-section



Fit m_w distribution as superposition of signal + background

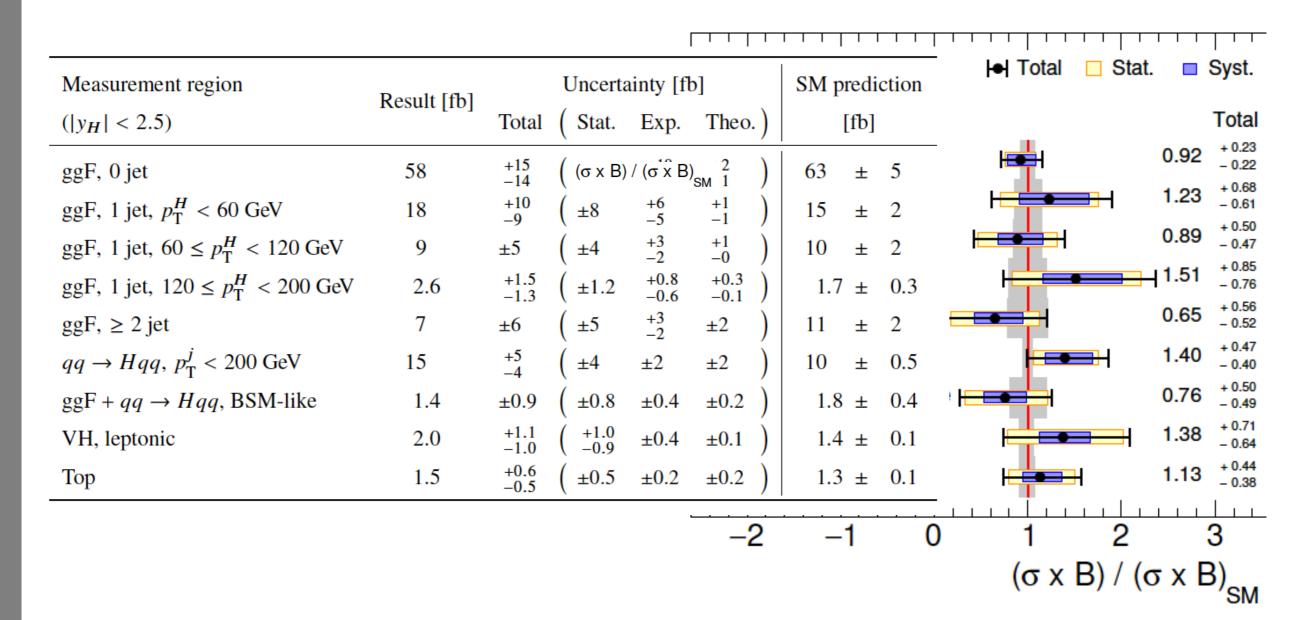
Inclusive fiducial xsec:

$$\sigma_{fid} = 60.4 \pm 6.1(stat) \pm 0.3(theo)fb$$

 $\sigma_{SM} = 63.5 \pm 3.3fb$

Overall good theoretical description of data.

Precision statistically limited



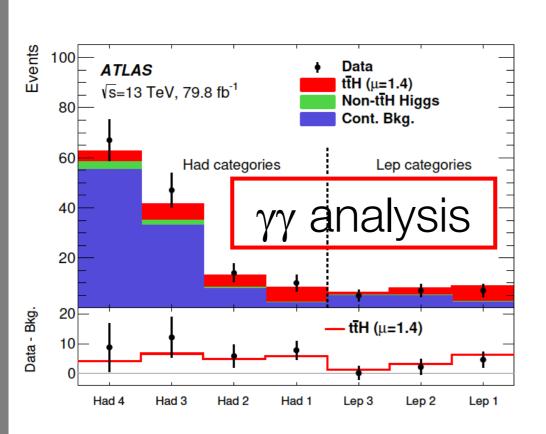
H→γγ, Simplified Template Cross Sections STXS

ATLAS-CONF-2018-028

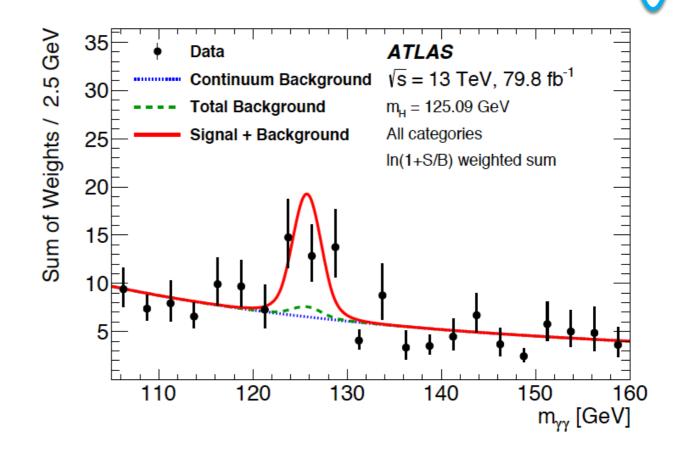
Due to the limitation of the data sample only the 9 most sensitive categories are introduced. Good agreement between data and SM prediction is observed

Total Higgs boson cross-section:

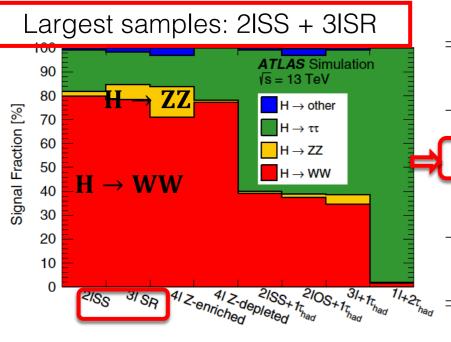
Small S/B

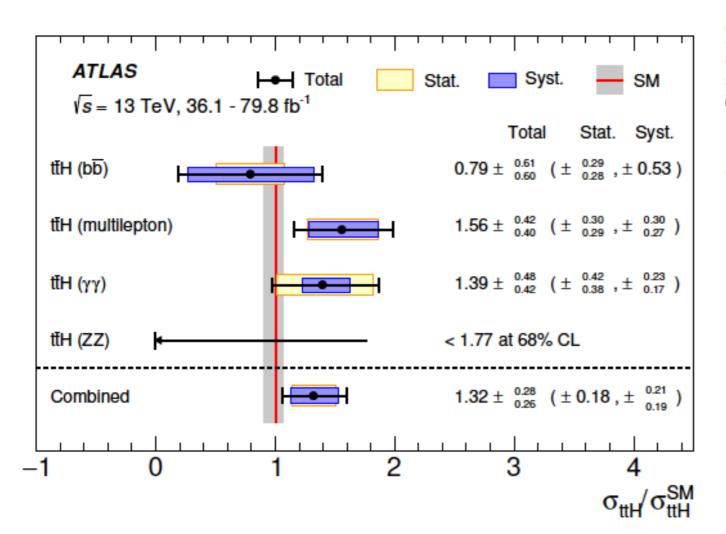

S/B

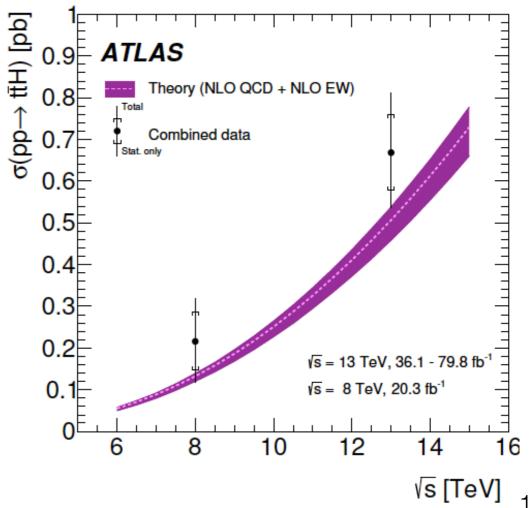
Large


tt (H \rightarrow ZZ* & $\gamma\gamma$) arXiv:1806.00425v1

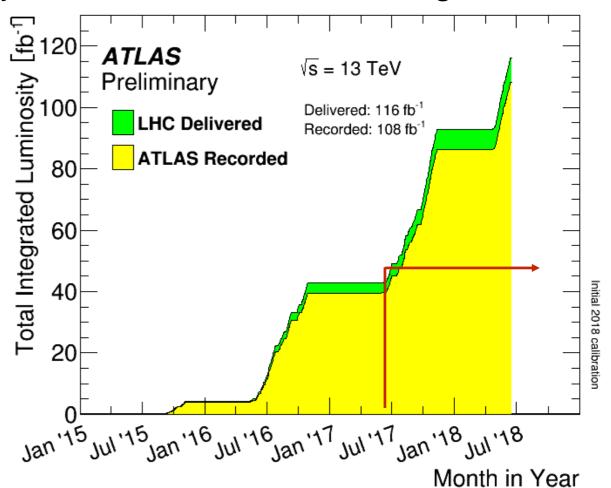
γγ analysis and ZZ* analysis: separate hadronic and leptonic decays using BDT-based categories


		Expected							
Bin	$t\bar{t}H$ (signal)	Non-	tH Higgs	No	n-Higgs		Total	Total
				Н	$\rightarrow \gamma \gamma$				
Had 1	4.2	± 1.1	0.49	± 0.33	1.8	± 0.5	6.4	± 1.3	10
Had 2	3.4	± 0.7	0.7	± 0.6	7.5	± 1.1	11.6	± 1.5	14
Had 3	4.7	± 0.9	2.0	± 1.7	32.9	± 2.2	39.6	± 3.2	47
Had 4	3.0	± 0.5	3.2	± 3.1	55.0	± 2.8	61	± 5	67
Lep 1	4.5	± 1.0	0.24	± 0.09	2.2	± 0.6	6.9	± 1.2	7
Lep 2	2.2	± 0.4	0.27	± 0.10	4.6	± 0.9	7.1	± 1.0	7
Lep 3	0.82	± 0.18	0.30	± 0.13	4.6	<u>+0</u> 9	5.7	± 0.9	5
$H \rightarrow ZZ^* \rightarrow 4\ell$									
Had 1	0.169	9 ± 0.031	0.021	± 0.007	0.00	8 ± 0.008	0.19	8 ± 0.033	0
Had 2	0.216	6 ± 0.032	0.20	± 0.09	0.22	± 0.12	0.63	± 0.16	0
Lep	0.212	2 ± 0.031	0.025	6 ± 0.0023	0.01:	5 ± 0.013	0.25	3 ± 0.034	0




Total Higgs ttH boson cross-section Combination

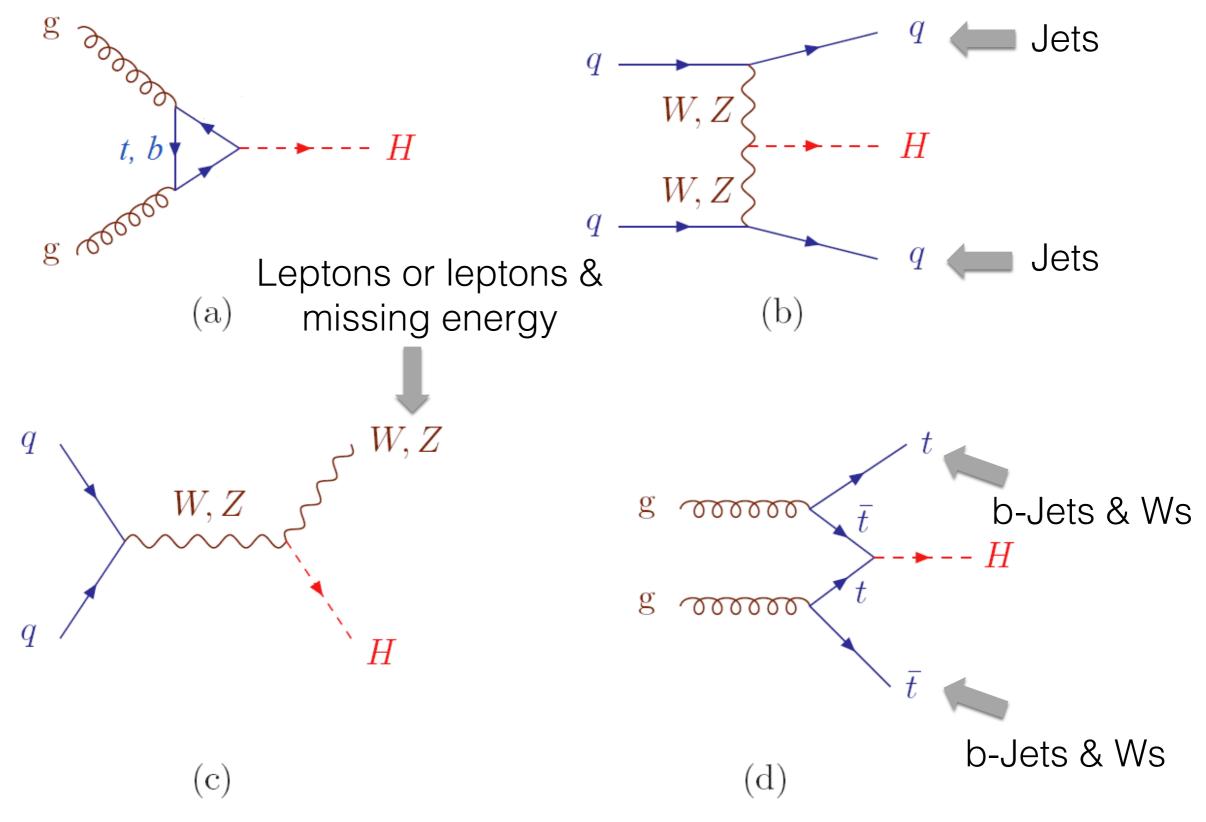
	-		-	
Analysis	Integrated	tīH cross	Obs.	Exp.
	luminosity [fb ⁻¹]	section [fb]	sign.	sign.
$H \to \gamma \gamma$	79.8	710^{+210}_{-190} (stat.) $^{+120}_{-90}$ (syst.)	4.1σ	3.7σ
$H \rightarrow$ multilepton	36.1	$790 \pm 150 \text{ (stat.)} ^{+150}_{-140} \text{ (syst.)}$	4.1σ	2.8σ
$H \rightarrow bb$	36.1	400^{+150}_{-140} (stat.) ± 270 (syst.)	1.4σ	1.6σ
$H \to ZZ^* \to 4\ell$	79.8	<900 (68% CL)	0σ	1.2σ
Combined (13 TeV)	36.1-79.8	$670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$	5.8σ	4.9σ
Combined (7, 8, 13 TeV)	4.5, 20.3, 36.1–79.8	_	6.3σ	5.1σ



Remarks and Conclusions

- ◆ A summary of the first set of ATLAS Run-II Higgs boson properties measurements has been presented
 - ◆ Precision of cross-section measurements ~2 times better than with Run-I dataset
 - ◆ Overall, a remarkable good agreement with SM predictions observed
- → Most of the measurements limited by statistics:
 - ◆ So far most results are based on ~80 fb⁻¹
 - ◆And more data expected in this last year of LHC Run-2 data-taking

Stay tuned for the sequel of the Higgs characterisation saga!



Backup

Production modes & topologies

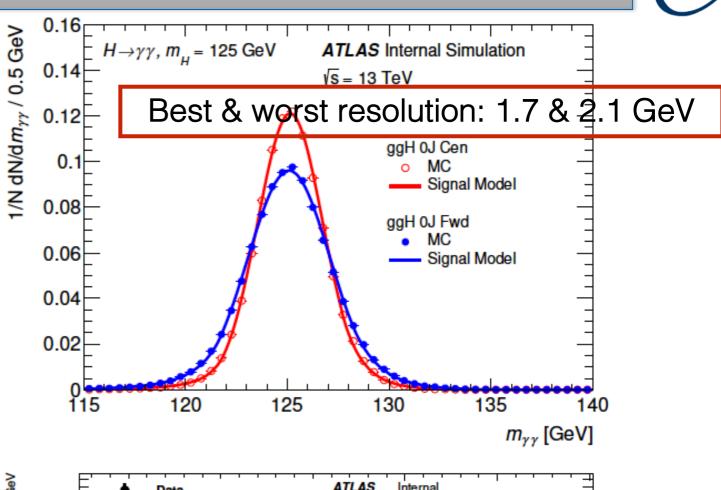
Selection in a nutshell

Large number of different topologies & reconstruction techniques. Commonly used objects are:

- Isolated & good quality leptons; charge & flavour in leptonic decays of bosons
- Isolated & good quality photons
- Invariant (transverse) masses Z (W)
- Jets (hadronic decays of bosons)
- B-tagged jets (for ttH topologies)

	Н→γγ	H→ZZ*→4l	H→WW*→eνμν	ttH, H→γγ,WW*,ZZ*
∫Ldt(fb-1); η interval	36.1, √s=13TeV <2.37 && excluding 1.37-1.52	79.8, √s=13TeV <2.47	36.1, √s=13TeV <2.37 && excluding 1.37 1.52	79.8 (36.1), √s=13TeV <2.47
Objects	Photons: Reconstruction quality, isolation, $E_T > 25 \text{GeV},$ $E_T / m \gamma \gamma > 0.25, 0.35$	Leptons: 2 SF,OC pairs; p _T >20,15,10,5 GeV 50 <m12(gev)<106; 12-<br="">50<m34(gev)<115 115<m<sub>4(GeV)<130</m<sub></m34(gev)<115 </m12(gev)<106;>	Leptons: Isolated e^± μ^∓ pairs p _T >22,15 GeV	isolated photons & b-jet & [(had decays) or (lep decays)] isolated leptons & b-jet & [(had decays) or (lep
Method	Fit distribution of mγγ as signal + background. Categorisation	Fit distribution of m _{4I} as signal + background. Categorisation	Transverse mass of di - lepton+E_T^miss discriminating variable Categorisation	Multi-variate analysis (MVA) Categorisation

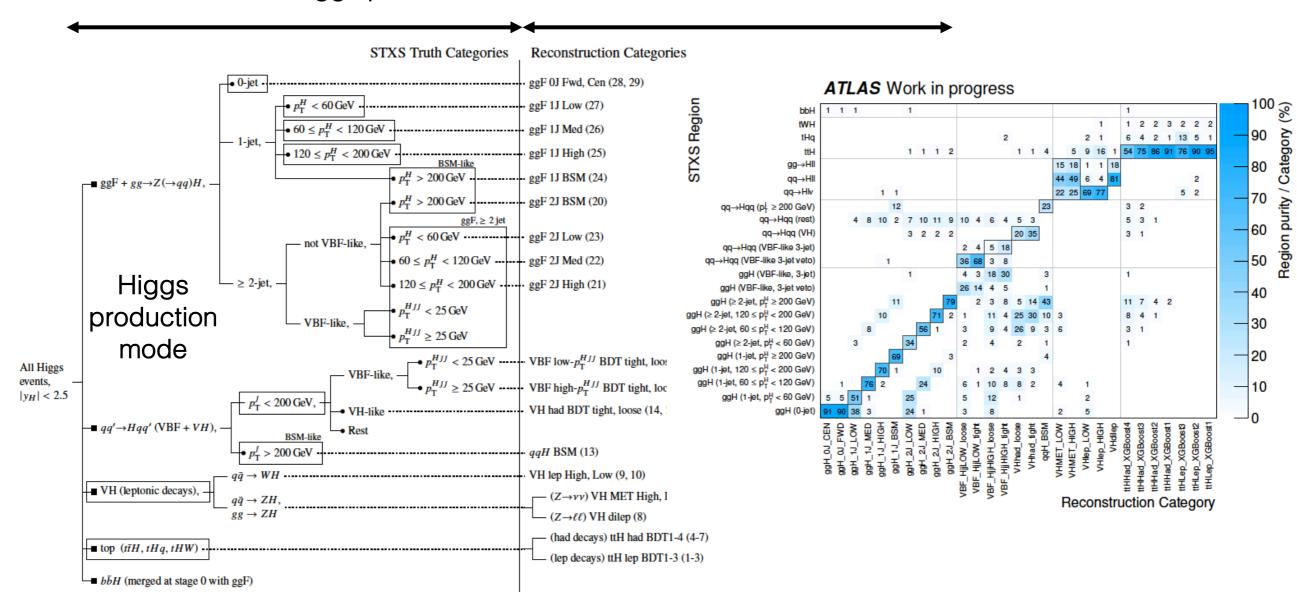
H→γγ inclusive and differential crosssection


CONF-HIGG-2018-02

Fit myy distribution as superposition of signal + background

Signal is modelled as a double-sided Crystal Ball.

Background parametrisation chosen as best trade-off between small bias in signal determination & small number of function parameters.



Categorization of $\gamma\gamma$ events

Exclusive bins in Higgs production Reconstruction categories in data

9 STXS categories(2 'BSM categories combined)

Good match between STXS & reconstruction categories

Cross sections & generators

Process	Generator	Showering	PDF set	$\sigma \text{ [pb]}$ $\sqrt{s} = 13 \text{ TeV}$	Order of σ calculation
ggF	POWHEG NNLOPS	Рутніа 8	PDF4LHC15	48.52	N ³ LO(QCD)+NLO(EW)
VBF	Powneg-Box	Рутніа 8	PDF4LHC15	3.78	approximate-NNLO(QCD)+NLO(EW)
WH	Powneg-Box	Рутніа 8	PDF4LHC15	1.37	NNLO(QCD)+NLO(EW)
$q\bar{q}' \rightarrow ZH$	Powneg-Box	Рутніа 8	PDF4LHC15	0.76	NNLO(QCD)+NLO(EW)
$gg \rightarrow ZH$	Powneg-Box	Рутніа 8	PDF4LHC15	0.12	NNLO(QCD)+NLO(EW)
tŧH	Powneg-Box	Рутніа 8	PDF4LHC15	0.51	NNLO(QCD)+NLO(EW)
$b\bar{b}H$	Powneg-Box	Рутніа 8	PDF4LHC15	0.49	NNLO(QCD)+NLO(EW)
tHq	MG5_AMC@NLO	Рутніа 8	CT10	0.07	4FS(LO)
tHW	MG5_AMC@NLO	Herwig++	CT10	0.02	5FS(NLO)
γγ	Sherpa	Sherpa	CT10		
$V\gamma\gamma$	Sherpa	SHERPA	CT10		
$t\bar{t}\gamma\gamma$	MG5_AMC@NLO	Рутніа 8	PDF4LHC15		

Process	Matrix Element	PDF	PS	Precision σ
	(Alternative)		(Alternative)	
ggF	POWHEG-BOX v2	PDF4LHC15 NNLO [7]	PYTHIA 8 [8]	N ³ LO QCD + NLO EW [10–14]
	NNLOPS [4–6]	TDI4EHCI3 MALO [/]	TTIMA O [O]	N E0 QCD + NE0 EW [10-14]
	(MG5_AMC@NLO [22, 23])		(HERWIG 7 [24])	
VBF	POWHEG-BOX v2	PDF4LHC15 NLO	PYTHIA 8	NNLO QCD + NLO EW [10, 15–17]
	(MG5_AMC@NLO)		(HERWIG 7)	
VH	POWHEG-BOX v2 [25]	PDF4LHC15 NLO	PYTHIA 8	NNLO QCD + NLO EW[26–28]
$qq \rightarrow WW$	SHERPA 2.2.2 [29, 30]	NNPDF3.0NNLO [31]	SHERPA 2.2.2 [32, 33]	NLO [34]
	(POWHEG-BOX v2,		(HERWIG++ [24])	
	MG5_AMC@NLO)		(HEKWIG++ [24])	
$gg \rightarrow WW$	SHERPA 2.1.1 [34]	CT10 [35]	SHERPA 2.1	NLO [36]
$WZ/V\gamma^*/ZZ$	SHERPA 2.1	CT10	SHERPA 2.1	NLO [34]
V_{γ}	SHERPA 2.2.2	NNPDF3.0NNLO	SHERPA 2.2.2	NLO [34]
	(MG5_AMC@NLO)		(CSS variation [32, 37])	
$t\bar{t}$	POWHEG-BOX v2 [38]	NNPDF3.0NLO	PYTHIA 8 [39]	NNLO+NNLL [40]
	SHERPA 2.2.1		(HERWIG 7)	
Wt	POWHEG-BOX v1 [41]	CT10 [35]	PYTHIA 6.428 [42]	NLO [41]
	(MG5_AMC@NLO)		(HERWIG++)	
Z+jets	SHERPA 2.2.1	NNPDF3.0NNLO	SHERPA 2.2.1	NLO [43]

Cross sections & generators

Production process	σ [pb]		
$ggF (gg \rightarrow H)$	48.6 ± 2.4		
VBF $(qq' \rightarrow Hqq')$	3.78 ± 0.08		
$WH (q\bar{q'} \to WH)$	1.373 ± 0.028		
$ZH \qquad (q\bar{q}/gg \rightarrow ZH)$	0.88 ± 0.04		
$ttH \qquad (q\bar{q}/gg \rightarrow t\bar{t}H)$	0.51 ± 0.05		
$bbH (q\bar{q}/gg \to b\bar{b}H)$	0.49 ± 0.12		
$tH \qquad (q\bar{q}/gg \to tH)$	0.09 ± 0.01		
Decay process	$\mathcal{B}\left[\cdot\ 10^{-4}\right]$		
$H \rightarrow ZZ^*$	262 ± 6		
$H \to ZZ^* \to 4\ell$	1.240 ± 0.027		

$\sqrt{s} \; (\text{TeV})$	Production cross section (in pb) for $m_H=125\mathrm{GeV}$								
	ggF	VBF	WH	ZH	$t ar{t} H$	total			
1.96	$0.95^{+17\%}_{-17\%}$	$0.065^{+8\%}_{-7\%}$	$0.13^{+8\%}_{-8\%}$	$0.079^{+8\%}_{-8\%}$	$0.004^{+10\%}_{-10\%}$	1.23			
7	$15.3^{+10\%}_{-10\%}$	$1.24^{+2\%}_{-2\%}$	$0.58^{+3\%}_{-3\%}$	$0.34^{+4\%}_{-4\%}$	$0.09^{+8\%}_{-14\%}$	17.5			
8	$19.5^{+10\%}_{-11\%}$	$1.60^{+2\%}_{-2\%}$	$0.70^{+3\%}_{-3\%}$	$0.42^{+5\%}_{-5\%}$	$0.13^{+8\%}_{-13\%}$	22.3			
13	$44.1^{+11\%}_{-11\%}$	$3.78^{+2\%}_{-2\%}$	$1.37^{+2\%}_{-2\%}$	$0.88^{+5\%}_{-5\%}$	$0.51^{+9\%}_{-13\%}$	50.6			
14	$49.7^{+11\%}_{-11\%}$	$4.28^{+2\%}_{-2\%}$	$1.51^{+2\%}_{-2\%}$	$0.99^{+5\%}_{-5\%}$	$0.61^{+9\%}_{-13\%}$	57.1			

Asymptotic formulae for likelihood-based tests of new physics

INFN ROMA Tre

Glen Cowan¹, Kyle Cranmer², Eilam Gross³, Ofer Vitells^{3,a}

Suppose for each event in the signal sample one measures a variable x and uses these values to construct a histogram $\mathbf{n} = (n_1, \dots, n_N)$. The expectation value of n_i can be written

$$E[n_i] = \mu s_i + b_i, \tag{2}$$

where the mean number of entries in the ith bin from signal and background are

$$s_i = s_{\text{tot}} \int_{\text{bin } i} f_s(x; \boldsymbol{\theta}_s) \, dx, \tag{3}$$

$$b_i = b_{\text{tot}} \int_{\text{bin } i} f_b(x; \boldsymbol{\theta}_b) \, dx. \tag{4}$$

Here the parameter μ determines the strength of the signal process, with $\mu=0$ corresponding to the background-only hypothesis and $\mu=1$ being the nominal signal hypothesis. The functions $f_s(x;\theta_s)$ and $f_b(x;\theta_b)$ are the probability density functions (pdfs) of the variable x for signal and background events, and θ_s and θ_b represent parameters that characterize the shapes of pdfs. The quantities s_{tot} and b_{tot} are the total mean numbers of signal and background events, and the integrals in (3) and (4) represent the probabilities for an event to be found in bin i. Below we use $\theta=(\theta_s,\theta_b,b_{\text{tot}})$ to denote all of the nuisance parameters. The signal normalization s_{tot} is not, however, an adjustable parameter but rather is fixed to the value predicted by the nominal signal model.

In addition to the measured histogram \mathbf{n} one often makes further subsidiary measurements that help constrain the nuisance parameters. For example, one may select a control sample where one expects mainly background events and from them construct a histogram of some chosen kinematic variable. This then gives a set of values $\mathbf{m} = (m_1, \dots, m_M)$ for the number of entries in each of the M bins. The expectation value of m_i can be written

$$E[m_i] = u_i(\boldsymbol{\theta}), \tag{5}$$

where the u_i are calculable quantities depending on the parameters θ . One often constructs this measurement so as to provide information on the background normalization parameter b_{tot} and also possibly on the signal and background shape parameters.

The likelihood function is the product of Poisson probabilities for all bins:

$$L(\mu, \boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}.$$
 (6)

To test a hypothesized value of μ we consider the *profile likelihood* ratio

$$\lambda(\mu) = \frac{L(\mu, \hat{\hat{\boldsymbol{\theta}}})}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})}.$$
 (7)

Systematic uncertainties on WW*→evµv result

Source	$\frac{\Delta\sigma_{\rm ggF}}{\sigma_{\rm ggF}}$ [%]	$\frac{\Delta\sigma_{\mathrm{VBF}}}{\sigma_{\mathrm{VBF}}}$ [%]
Data statistics	±8	±46
CR statistics	±8	±9
MC statistics	±5	±23
Theoretical uncertainties	±8	±21
ggF signal	±5	±15
VBF signal	<1	±15
WW	±5	±12
Top-quark	±4	±4
Experimental uncertainties	±9	±8
<i>b</i> -tagging	±5	±6
Pile-up	±5	±2
Jet	±3	±4
Electron	±3	<1
Misidentified leptons	±5	±9
Luminosity	±2	±3
TOTAL	±17	±59

Run1/Run2 comparison for WW*→evµv result

	$\mu_{\sf ggF}$	stat.	syst.
ATLAS, 13 TeV, 36.1 fb ⁻¹	$1.21^{+0.22}_{-0.21}$	10%	15%
ATLAS, 7+8 TeV, 24.8 fb ⁻¹	$1.02^{+0.29}_{-0.26}$	19%	20%
CMS, 13 TeV, 35.9 fb ⁻¹	$1.38^{+0.21}_{-0.24}$	-	-

	μ_{VBF}	total
ATLAS, 13 TeV, 36.1 fb ⁻¹	$0.62^{+0.37}_{-0.36}$	59%
ATLAS, 7+8 TeV, 24.8 fb ⁻¹	$1.27^{+0.53}_{-0.45}$	+41% -35%
CMS, 13 TeV, 35.9 fb ⁻¹	$0.29^{+0.66}_{-0.29}$	+228% -100%

CMS also gives results for VH.

Theory ggF cross section prediction improved in Run 2 w.r.t. Run 1. μ of Run 2 uses different cross section prediction than in Run 1.

- Good compatibility between Run 1 and Run 2, as well as ATLAS and CMS
- ggF: Precision improved by 36% with respect to Run 1.
 - Systematic uncertainties reduced by 25%.
- VBF signal strength low in Run 2
 - Expected significance is 2.7σ for the Run 1 and the Run 2 measurements

New measurements in $H \rightarrow WW^*$ will contribute to combined Higgs results

H→ZZ*→4I inclusive and differential cross-section

Experimental and particle level selection as similar as possible to minimise theory uncertainties

Fiducial phase space definition

Leptons and jets

Muons: $p_{\rm T} > 5 \; {\rm GeV}, \; |\eta| < 2.7$

Electrons: $p_{\mathrm{T}} > 7 \; \mathrm{GeV}, \; |\eta| < 2.47$

Jets: $p_{\rm T} > 30 \; {\rm GeV}, \, |y| < 4.4$

Jet-lepton overlap removal: $\Delta R(\text{jet}, \ell) > 0.1 (0.2)$ for muons (electrons)

Lepton selection and pairing

Lepton kinematics: $p_T > 20, 15, 10 \text{ GeV}$

Leading pair (m_{12}) : SFOS lepton pair with smallest $|m_Z - m_{\ell\ell}|$

Subleading pair (m_{34}) : remaining SFOS lepton pair with smallest $|m_Z - m_{\ell\ell}|$

Event selection (at most one quadruplet per channel)

Mass requirements: $50 < m_{12} < 106 \text{ GeV}$ and $12 < m_{34} < 115 \text{ GeV}$

Lepton separation: $\Delta R(\ell_i, \ell_j) > 0.1 (0.2)$ for same- (different-) flavour leptons

 J/ψ veto: $m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOS lepton pairs

Mass window: $115 \ GeV < m_{4\ell} < 130 \ GeV$

Fiducial xsections are defined at the particle level

==> correct the number of reconstructed events by the difference in acceptance between detector-level and particle level

$H\rightarrow ZZ^*\rightarrow 4I$ inclusive and differential cross-section

SR event yields

Final state	SM Higgs	ZZ^*	$Z + \mathrm{jets}, t \bar{t}$	Expected	Observed
			WZ, ttV , VVV		
4μ	20.1 ± 2.1	9.8 ± 0.5	1.3 ± 0.3	31.2 ± 2.2	33
4e	10.6 ± 1.2	4.4 ± 0.4	1.3 ± 0.2	16.3 ± 1.3	16
$2e2\mu$	14.2 ± 1.4	7.1 ± 0.4	1.0 ± 0.2	22.3 ± 1.5	32
$2\mu 2e$	10.8 ± 1.2	4.6 ± 0.4	1.4 ± 0.2	16.8 ± 1.3	21
Total	56 ± 6	25.9 ± 1.5	5.0 ± 0.6	87 ± 6	102

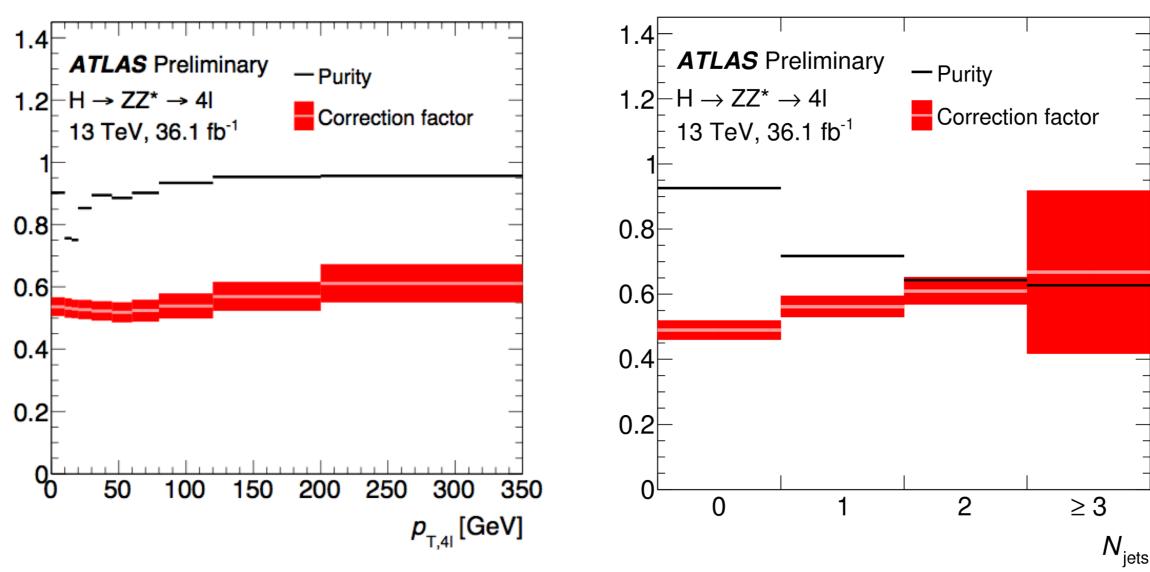
Exclusive, Inclusive and Total cross-section

Cross section	Data (\pm (stat) \pm (sys))	LHCXSWG prediction	p-value [%]
$\sigma_{4\mu}$ [fb]	$0.92^{+0.25}_{-0.23}^{+0.07}_{-0.05}$	0.880 ± 0.039	88
σ_{4e} [fb]	$0.67 \substack{+0.28 & +0.08 \ -0.23 & -0.06}$	0.688 ± 0.031	96
$\sigma_{2\mu2e}$ [fb]	$0.84 \begin{array}{l} +0.28 \\ -0.24 \end{array} \begin{array}{l} +0.09 \\ -0.06 \end{array}$	0.625 ± 0.028	39
$\sigma_{2e2\mu}$ [fb]	$1.18 {}^{+0.30}_{-0.26} {}^{+0.07}_{-0.05}$	0.717 ± 0.032	7
$\sigma_{4\mu+4e}$ [fb]	$1.59 {}^{+0.37}_{-0.33} {}^{+0.12}_{-0.10}$	1.57 ± 0.07	65
$\sigma_{2\mu2e+2e2\mu}$ [fb]	$2.02_{-0.36}^{+0.40}_{-0.11}^{+0.14}$	1.34 ± 0.06	6
σ_{sum} [fb]	$3.61 ^{+0.54}_{-0.50} ^{+0.26}_{-0.21}$	2.91 ± 0.13	19
σ_{comb} [fb]	$3.62 {}^{+0.53}_{-0.50} {}^{+0.25}_{-0.20}$	2.91 ± 0.13	18
σ_{tot} [pb]	$69_{-9}^{+10} \pm 5$	55.6 ± 2.5	19

Higgs boson signal xsections normalised to LHCXS WG predictions:

- for ggF, N3LO in QCD and NLO EW corrections applied
- VBF is fully NLO (approximate NNLO QCD corrections applied)

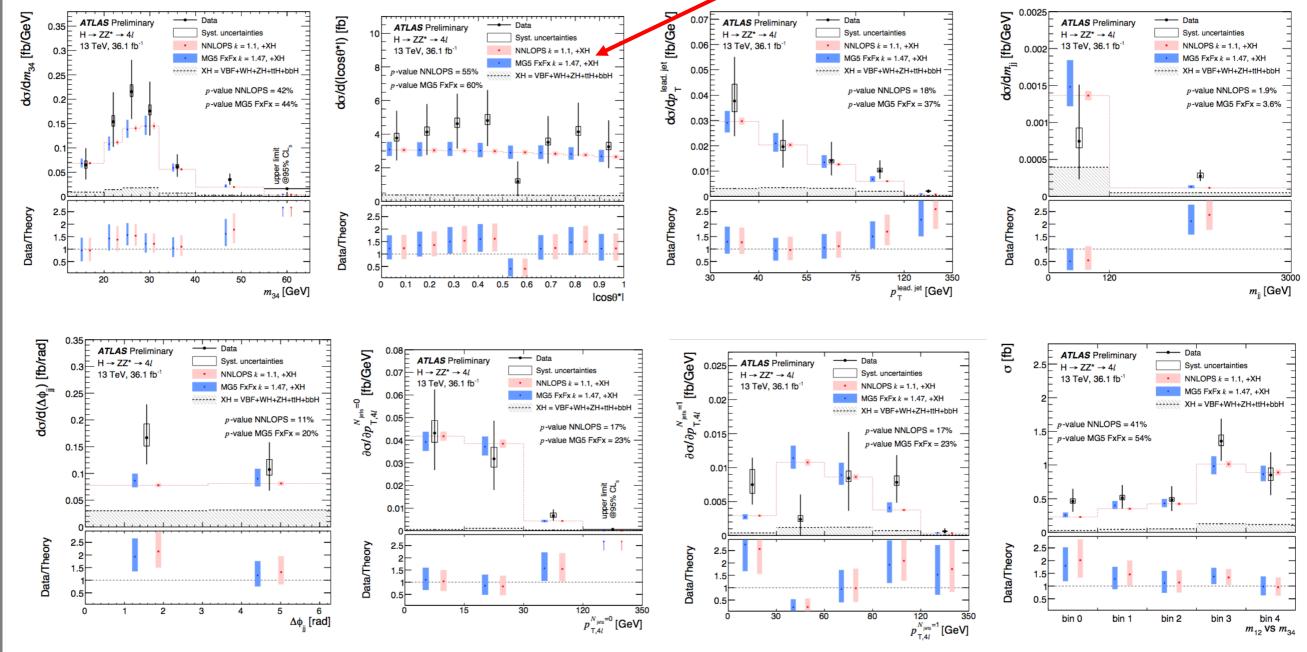
Uncertainties breakdown


Observable	Stat	Systematic	Do	minant sy	stematic	components	[%]		
	unc. [%]	unc. [%]	e	jets	μ	ZZ^* theo	Model	$Z + \mathrm{jets} + t\bar{t}$	Lumi
σ_{comb}	14	7	3	< 0.5	3	2	0.8	0.8	4
$\mathrm{d}\sigma/\mathrm{d}p_{\mathrm{T},4\ell}$	30 - 150	3 - 11	1 - 4	< 0.5	1 - 3	0 - 7	0 - 6	1 - 6	3 - 5
$\partial \sigma/\partial p_{\mathrm{T,4}\ell}$ (0j)	31 - 52	10 - 18	2 - 5	3 - 16	1 - 4	3 - 8	1	2 - 3	3 - 5
$\partial \sigma/\partial p_{\mathrm{T,4\ell}}$ (1j)	35 - 15	6 - 30	1 - 4	2 - 29	1 - 3	1 - 4	1 - 11	1 - 2	3 - 5
$\partial \sigma/\partial p_{\mathrm{T,4\ell}}$ (2j)	30 - 41	5 - 21	1 - 3	2 - 19	1 - 3	1 - 5	1 - 7	1 - 2	3 - 5
$\mathrm{d}\sigma/\mathrm{d} y_{4\ell} $	29 - 120	5 - 8	2 - 4	< 0.5	2 - 3	1 - 2	0 - 1	1 - 1	3 - 5
$d\sigma/d \cos\theta^* $	31 - 100	5 - 8	2 - 4	< 0.5	2 - 3	1 - 2	0 - 2	1 - 4	3 - 5
$d\sigma/dm_{34}$	26 - 53	4 - 13	2 - 5	< 0.5	1 - 5	1 - 6	0 - 1	1 - 3	3 - 5
$\partial^2 \sigma / \partial m_{12} \partial m_{34}$	21 - 40	4 - 12	2 - 4	< 0.5	1 - 4	1 - 6	0 - 1	1 - 4	3 - 5
$d\sigma/dN_{\rm jets}$	22 - 44	6 - 31	1 - 4	4 - 22	1 - 3	2 - 4	1 - 22	1 - 2	3 - 5
${ m d}\sigma/{ m d}p_{ m T}^{ m lead,jet}$	30 - 53	5 - 18	1 - 4	3 - 16	1 - 3	2 - 3	1 - 8	1 - 2	3 - 5
$d\sigma/d\Delta\phi_{jj}$	29 - 43	9 - 17	1 - 3	8 - 14	1 - 3	3 - 4	1 - 7	1 - 1	3 - 5
$d\sigma/dm_{jj}$	23 - 100	9 - 27	1 - 4	8 - 24	1 - 4	3 - 8	1 - 7	0 - 3	3 - 5

H→ZZ*→4l inclusive and differential cross-section

Bin-by-bin correction factors for detector inefficiencies and reconstruction

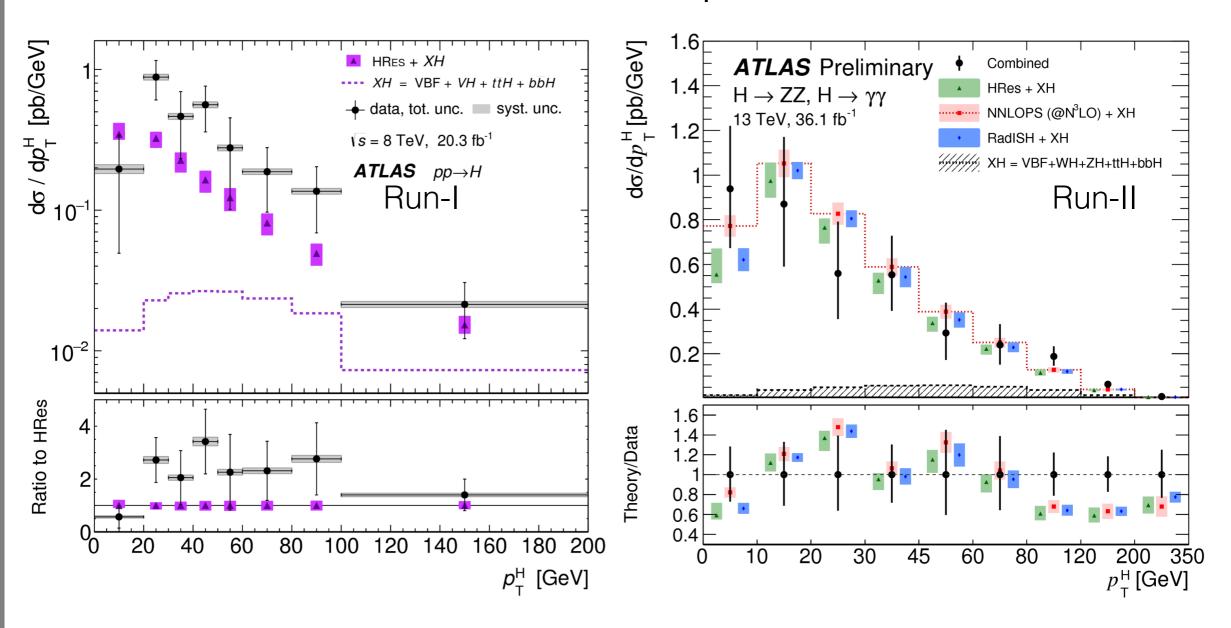
- For ggF, NNLOPS sample used to derived the correction factor
- correction factors agree within 15% for all production modes except for ttH, due to the missing isolation requirement needed to identify leptons from hadronic jets at particle level
- Large uncertainty on the last bin of Njets due to exp jet reconstruction uncertainty mainly



H→ZZ*→4l inclusive and differential cross-section

More differential distributions...

different ggF predictions normalized to N3LO with the corresponding k-factors XH processes have been added



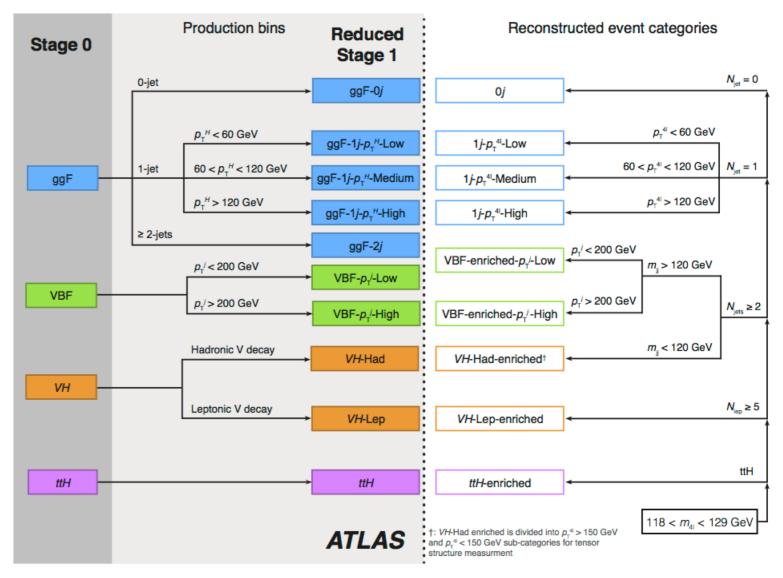
H→ZZ*→4l inclusive and differential cross-section

Run-I/Run-II comparison

More bins at high-pt and gain in statistical precision. Not enough sensitivity to different generators (yet)

Production cross-sections in 4l channel

σ×B measured in several dedicated mutually exclusive regions of the phase space based on the production process. Production bins are chosen in such a way that the measurement precision is maximised and at the same time possible BSM contributions can be isolated.

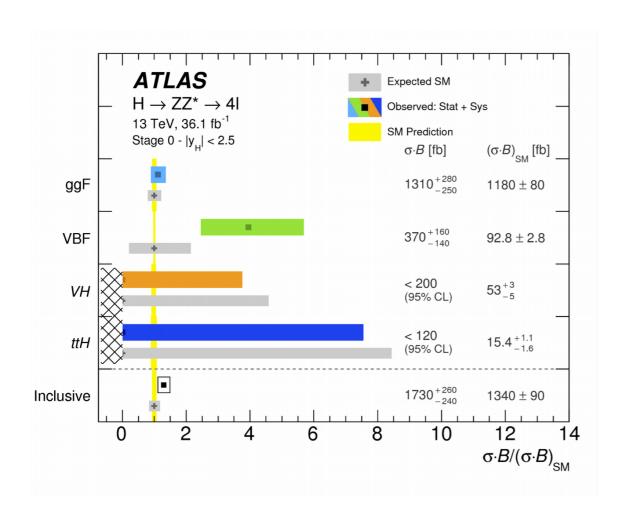

- *simple fiducial region definitions for each Higgs production mode* based on Higgs kinematics and associated particles → match experimental categories

Advantage: cross-sections can be interpreted in terms of Higgs boson couplings, and theory uncertainties enter only at that stage

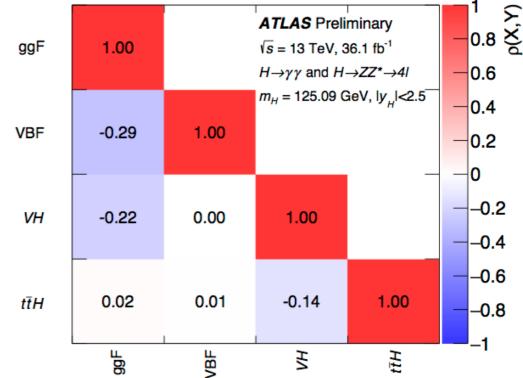
Two sets
of production bins considered:
Stage 0 (more inclusive ==>
smaller
statistical uncertainty)
and Reduced Stage 1(*)
(smaller theoretical uncertainties)

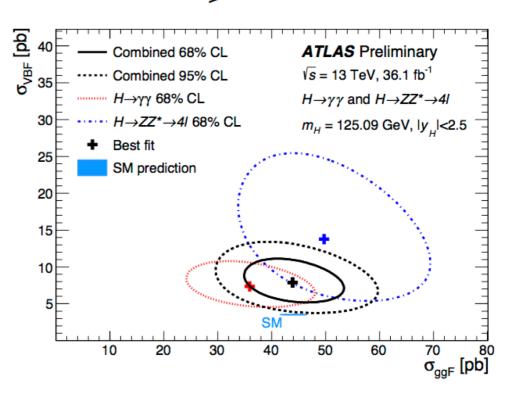
e.g. exclusive jet bins and p_TH

(*) too fine granularity for precise measurements in all STXS Stage-1 bins => merge some categories



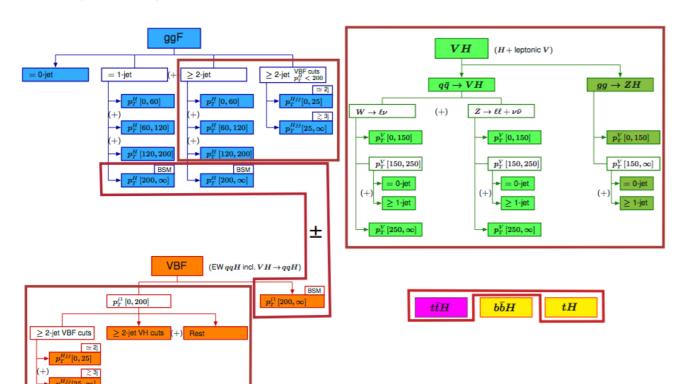
H→4l Stage-0 production cross-section measurements



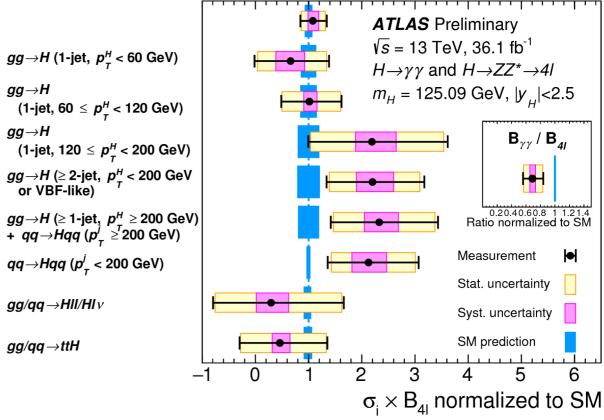

Combination of Stage-0 production cross-section measurements:

Correlation matrix

ggF and VBF anti-correlated since VBF category has large contribution from ggF production



H→4l Stage-0 production cross-section measurements



ATLAS preliminary

Stage-1 and bins merging for intermediate Stage-1 ATLAS measurements

Towards Stage-1 Template XS measurement:
9 categories

Additional details H →41

Table 2: List of event selection requirements which define the fiducial phase space for the cross section measurement. SFOS lepton pairs are same-flavour opposite-sign lepton pairs.

	Leptons and jets
Leptons:	$p_{\rm T} > 5 {\rm ~GeV}, \eta < 2.7$
Jets:	$p_{\rm T} > 30 \text{ GeV}, y < 4.4$
remove jets with:	$\Delta R(\text{jet}, \ell) < 0.1$
Lep	ton selection and pairing
Lepton kinematics:	$p_{\rm T} > 20, 15, 10 {\rm GeV}$
Leading pair (m_{12}) :	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $
Subleading pair (m_{34}) :	remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $
Event selection	(at most one quadruplet per event)
Mass requirements:	$50 \text{ GeV} < m_{12} < 106 \text{ GeV}$ and $12 \text{ GeV} < m_{34} < 115 \text{ GeV}$
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1$
J/ψ veto:	$m(\ell_i, \ell_j) > 5$ GeV for all SFOS lepton pairs
Mass window:	$115 \text{ GeV} < m_{4\ell} < 130 \text{ GeV}$
If extra leptons with $p_T > 12$ GeV:	Quadruplet with the largest ME

Table 2: Event selection criteria used to define the signal regions in the $H \rightarrow WW^* \rightarrow ev\mu\nu$ analysis.

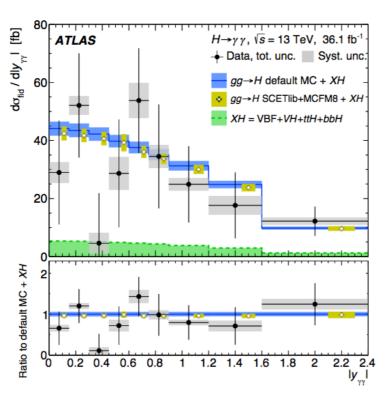
Category	$N_{\text{jet}} = 0$ $N_{\text{jet}} = 1$	$N_{\rm jet} \ge 2$, VBF	
Preselection	Two isolated, different-flavour, leptons ($\ell = e, \mu$) with opposite charge $p_{\rm T}^{\rm lead} > 22~{\rm GeV}$, $p_{\rm T}^{\rm sublead} > 15~{\rm GeV}$ $m_{\ell\ell} > 10~{\rm GeV}$ $E_{\rm T}^{\rm miss, track} > 20~{\rm GeV}$		
Background rejection	$N_{b\text{-jet,}(p_{\mathrm{T}}>20~\mathrm{GeV})} = 0$ $\Delta\phi(\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}}) > \pi/2 \max\left(m_{\mathrm{T}}^{\ell}\right) > 50~\mathrm{GeV} m_{\tau\tau} < m_{Z} - 25~\mathrm{GeV}$ $m_{\tau\tau} < m_{Z} - 25~\mathrm{GeV}$		
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$ topology	$m_{\ell\ell} < 55 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 1.8$	Central Jet Veto Outside Lepton Veto	
Discriminant Variable BDT input variables	$m_{ m T}$	BDT $m_{jj}, \Delta y_{jj}, m_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\mathrm{T}}, \sum C_{\ell}, \sum_{\ell,j} m_{\ell j}, p_{\mathrm{T}}^{\mathrm{tot}}$	

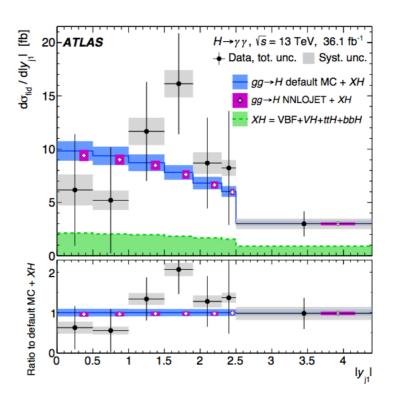
H→γγ inclusive and differential cross-section

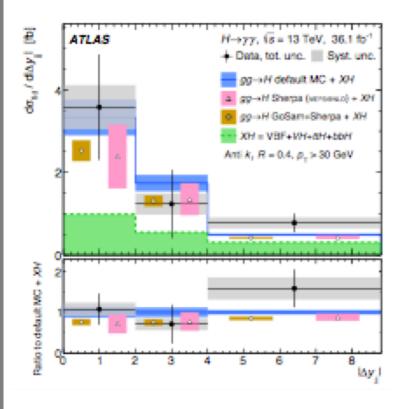
Table 14: Summary of the particle-level definitions of the five fiducial integrated regions described in the text. The photon isolation $p_{\rm T}^{\rm iso,0.2}$ is defined analogously to the reconstructed-level track isolation as the transverse momentum of the system of charged particles within $\Delta R < 0.2$ of the photon.

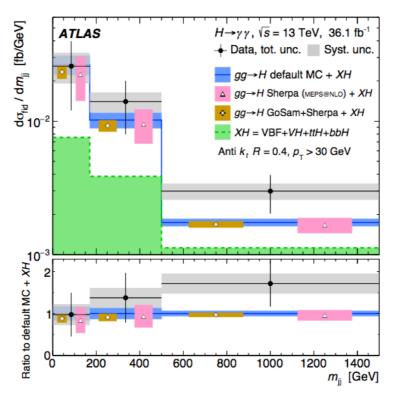
Objects	Definition
Photons	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.37, \ p_{\rm T}^{\rm iso,0.2}/p_{\rm T}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30 \text{ GeV}$, $ y < 4.4$
Leptons, ℓ	<i>e</i> or μ , $p_{\rm T} > 15$ GeV, $ \eta < 2.47$ for <i>e</i> (excluding 1.37 < $ \eta < 1.52$) and $ \eta < 2.7$ for μ
Fiducial region	Definition
Diphoton fiducial	$N_{\gamma} \ge 2$, $p_{\rm T}^{\gamma_1} > 0.35 m_{\gamma\gamma} = 43.8 {\rm GeV}$, $p_{\rm T}^{\gamma_2} > 0.25 m_{\gamma\gamma} = 31.3 {\rm GeV}$
VBF-enhanced	Diphoton fiducial, $N_j \ge 2$ with $p_T^{\text{jet}} > 25$ GeV,
	$m_{jj} > 400 \text{ GeV}, \ \Delta y_{jj} > 2.8, \ \Delta \phi_{\gamma\gamma,jj} > 2.6$
$N_{\text{lepton}} \ge 1$	Diphoton fiducial, $N_{\ell} \ge 1$
High $E_{\mathrm{T}}^{\mathrm{miss}}$	Diphoton fiducial, $E_{\rm T}^{\rm miss} > 80 {\rm GeV}, \ p_{\rm T}^{\gamma\gamma} > 80 {\rm GeV}$
$t\bar{t}H$ -enhanced	Diphoton fiducial, $(N_j \ge 4, N_{b\text{-jets}} \ge 1)$ or $(N_j \ge 3, N_{b\text{-jets}} \ge 1, N_{\ell} \ge 1)$

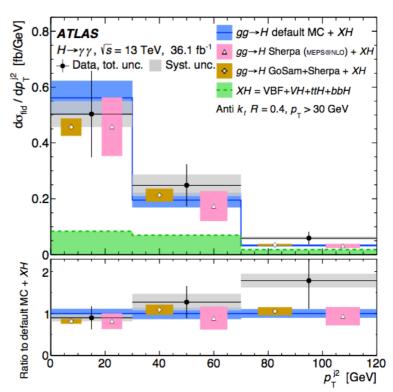
Measured fiducial cross-sections

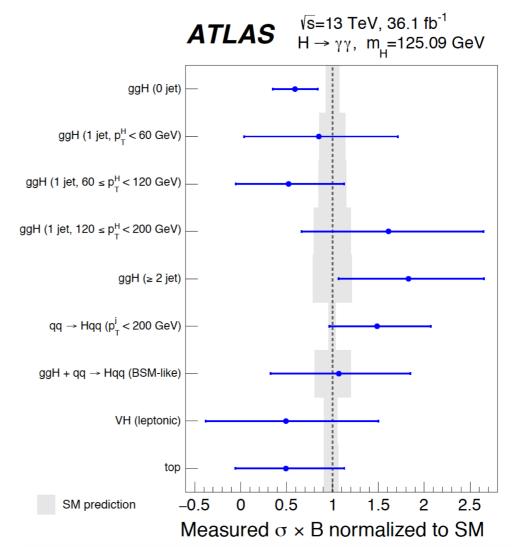

Fiducial region	Measured cross section	SM prediction		
Diphoton fiducial	$55 \pm 9 \text{ (stat.)} \pm 4 \text{ (exp.)} \pm 0.1 \text{ (theo.) fb}$	$64 \pm 2 \text{fb}$	$[N^3LO + XH]$	
VBF-enhanced	3.7 ± 0.8 (stat.) ± 0.5 (exp.) ± 0.2 (theo.) fb	$2.3 \pm 0.1 \text{fb}$	[default MC + XH]	
$N_{\mathrm{lepton}} \geq 1$	$\leq 1.39 \text{ fb } 95\% \text{ CL}$	$0.57 \pm 0.03 \text{ fb}$	[default $MC + XH$]	
High $E_{\mathrm{T}}^{\mathrm{miss}}$	$\leq 1.00 \text{ fb } 95\% \text{ CL}$	$0.30 \pm 0.02 \text{ fb}$	[default $MC + XH$]	
$t\bar{t}H$ -enhanced	≤ 1.27 fb 95% CL	$0.55 \pm 0.06 \text{ fb}$	[default MC + XH]	




H→γγ inclusive and differential cross-section

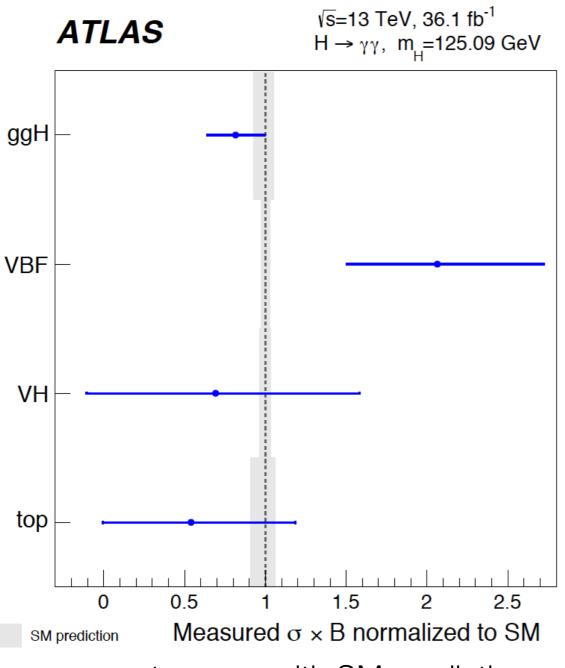



More differential distributions...

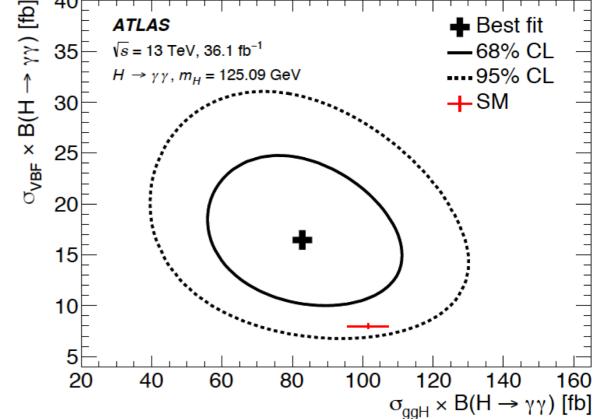

Production cross-sections in yy channel

The events satisfying the diphoton selection classified into 31 exclusive categories that are optimized for the best separation of the Higgs boson production processes and for the maximum sensitivity to the phase space regions defined by the stage 1 of the simplified template cross-section framework. A combined fit to the event reconstruction categories is then performed to determine nine simplified template cross sections (with |yH|< 2.5).

No sensitivity to all the 31 categories ==> merge categories and fit in only 10/31 final categories



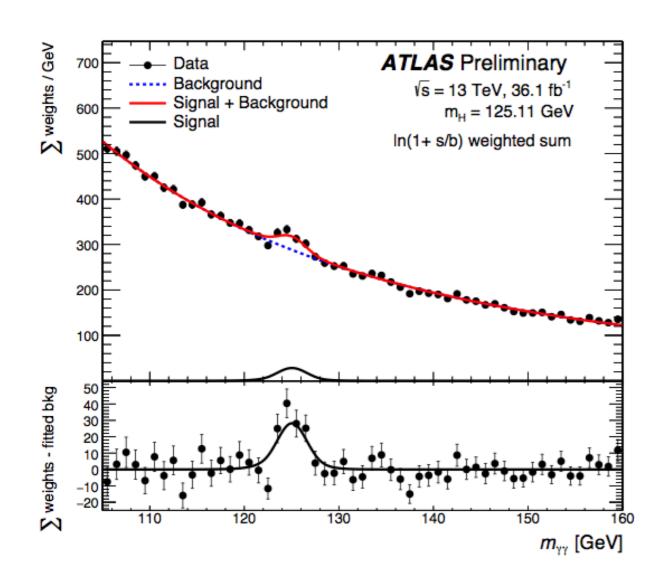
Production cross-sections in yy channel


bbH merged to ggH

In general, all main production modes can be probed in diboson decays

Measurements agree with SM predictions within 2σ

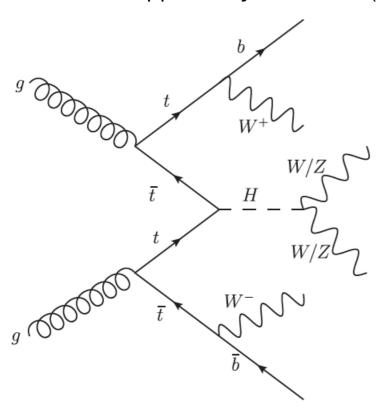
68% and 95% CL 2D counters VBF vs ggF top and VH profiled in the fit



Higgs boson mass - yy channel

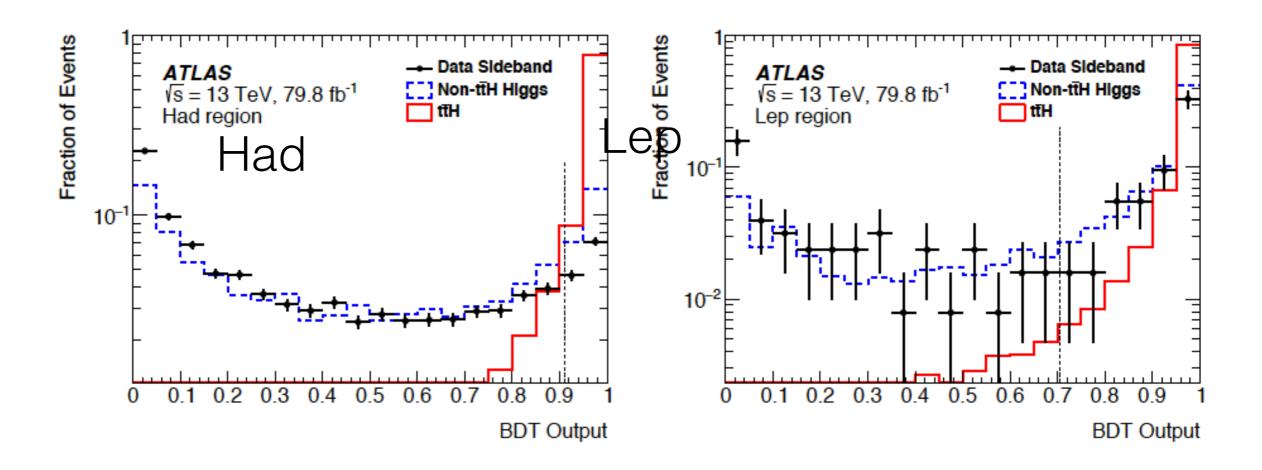
Source	Systematic uncertainty on $m_H^{\gamma\gamma}$ [MeV]
LAr cell non-linearity	±200
LAr layer calibration	±190
Non-ID material	± 120
Lateral shower shape	±110
ID material	±110
Conversion reconstruction	±50
$Z \rightarrow ee$ calibration	±50
Background model	±50
Primary vertex effect on mass scale	±40
Resolution	+20 -30
Signal model	±20

Systematic uncertainties breakdown



Higgs boson measurements in diboson final states - ttH

80 fb⁻¹ taken at a center-of-mass energy of 13 TeV have been used to search for the ttH in the H \rightarrow ZZ*/ $\gamma\gamma$ decay channel (and combined with previous measurements using 36 fb⁻¹)



BDT analysis used in both cases to discriminate between signal and backgrounds

BDT distributions in ttH analysis

