

Recent results from EW fits

Jens Erler (IF-UNAM & JGU Mainz)

Higgs Hunting 2018

Paris, France

July 23–25, 2018

Outline

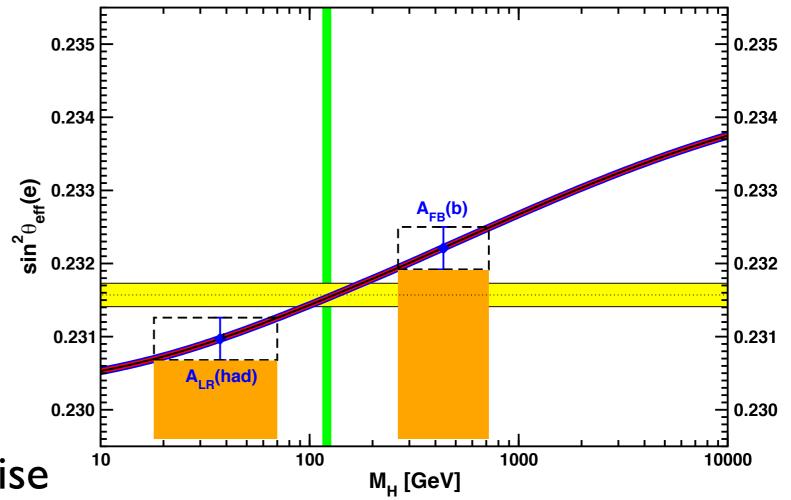
- Key Observables and Inputs
- Gauge Couplings at Lower Energies
- Electroweak Fits
- Conclusions

Key observables and inputs

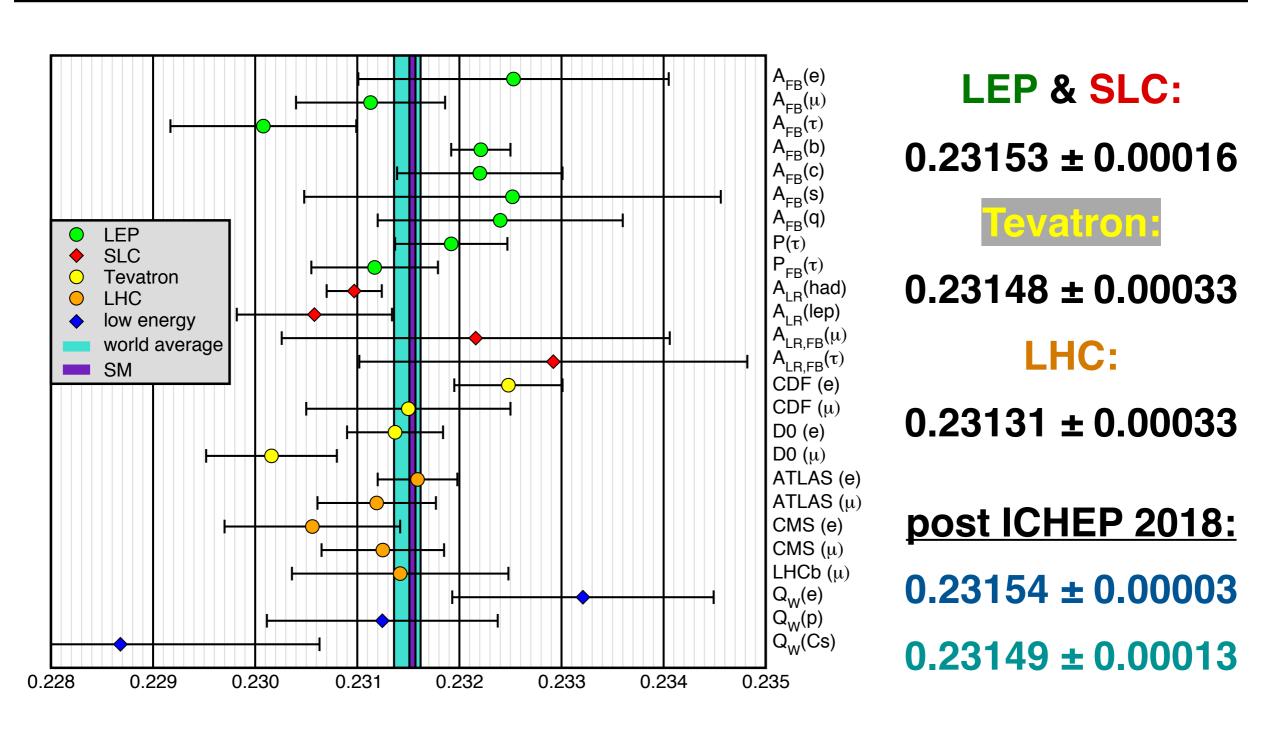
Z pole

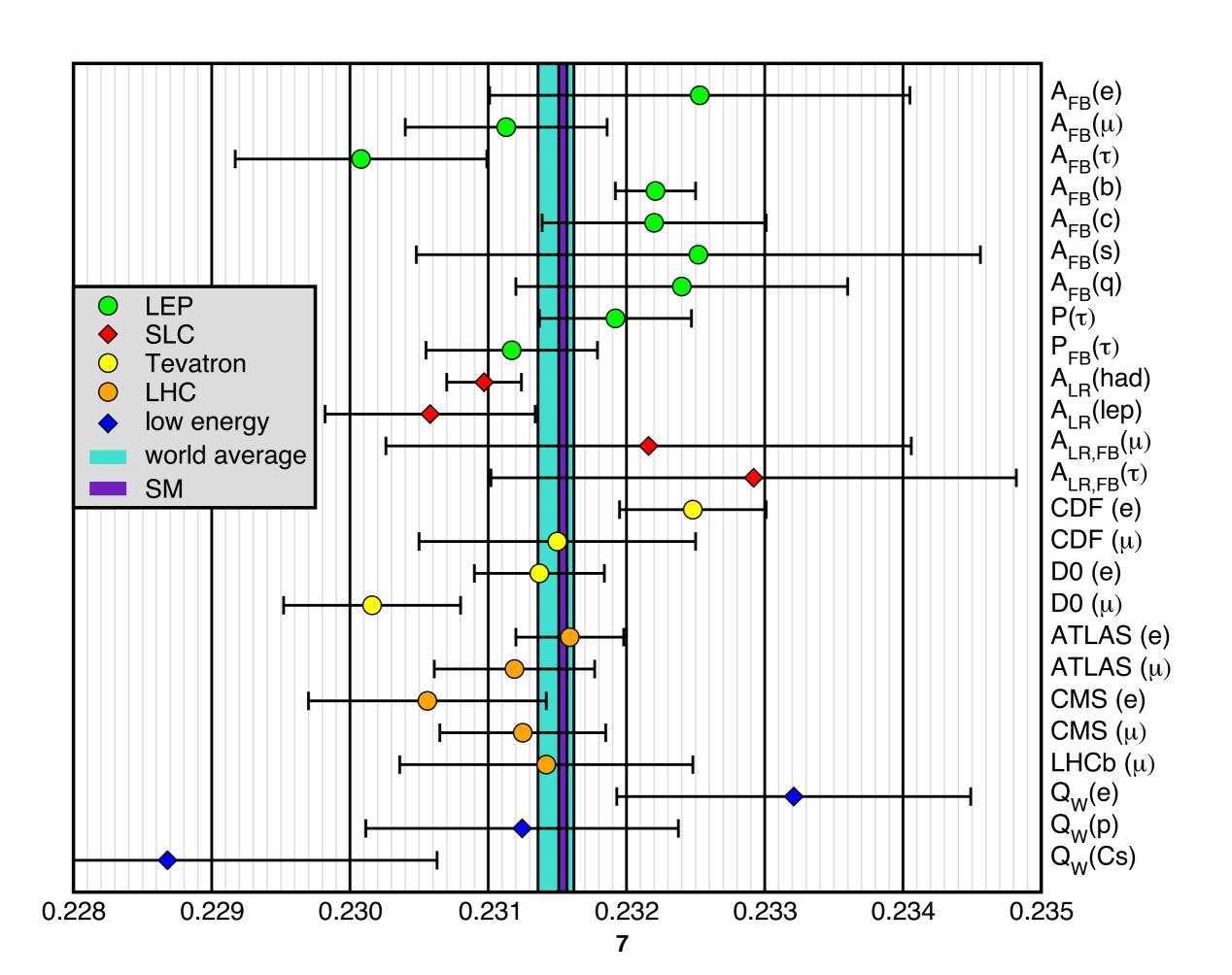
- $M_Z = 91.1876 \pm 0.0021$ GeV (error no longer negligible)
- Γ_Z , σ_{had} and hadronic-to-leptonic BRs provide only α_s constraints not limited by theory
- forward-backward and left-right asymmetries

$$\propto A_e \sim 1 - 4 \sin^2\theta_W(M_Z)$$

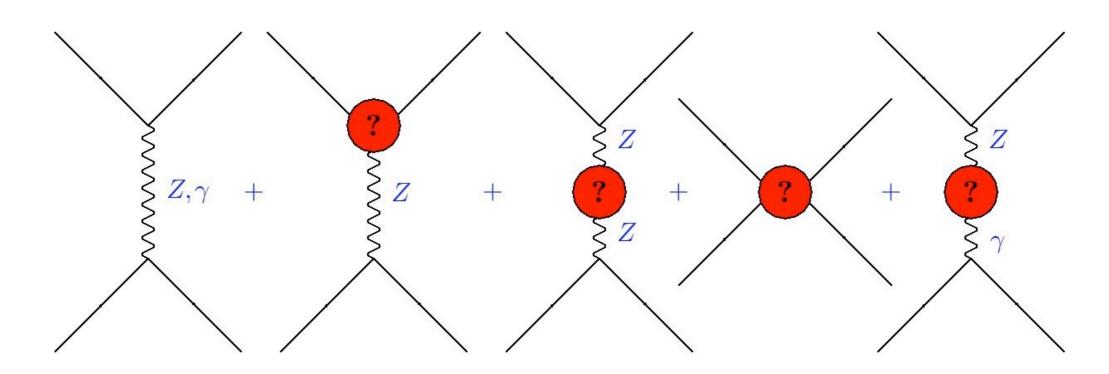

have strong sensitivity to

$$\sin^2\theta_W = g'^2/(g^2 + g'^2)$$

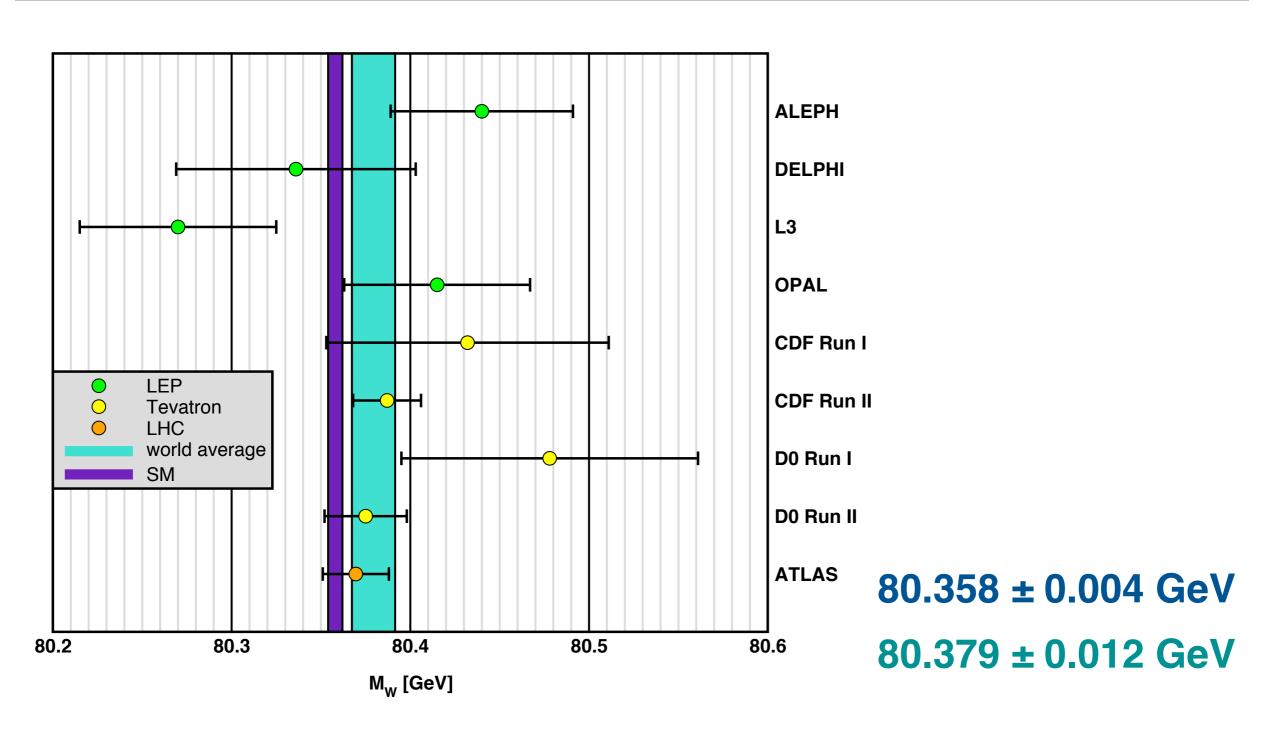

ALEPH, DELPHI, L3 & OPAL, Phys. Rept. 427 (2006)


sin²θw within the SM

- \blacksquare $\sin^2\theta_W$ & M_W most precise derived quantities in EW sector:
 - Standard Model: key test of EW symmetry breaking
 - Higgs sector:
 predict M_H and
 compare with LHC
 - 3 σ conflict:
 between most precise
 LEP and SLC results



sin²θw measurements



sin²θw beyond the SM

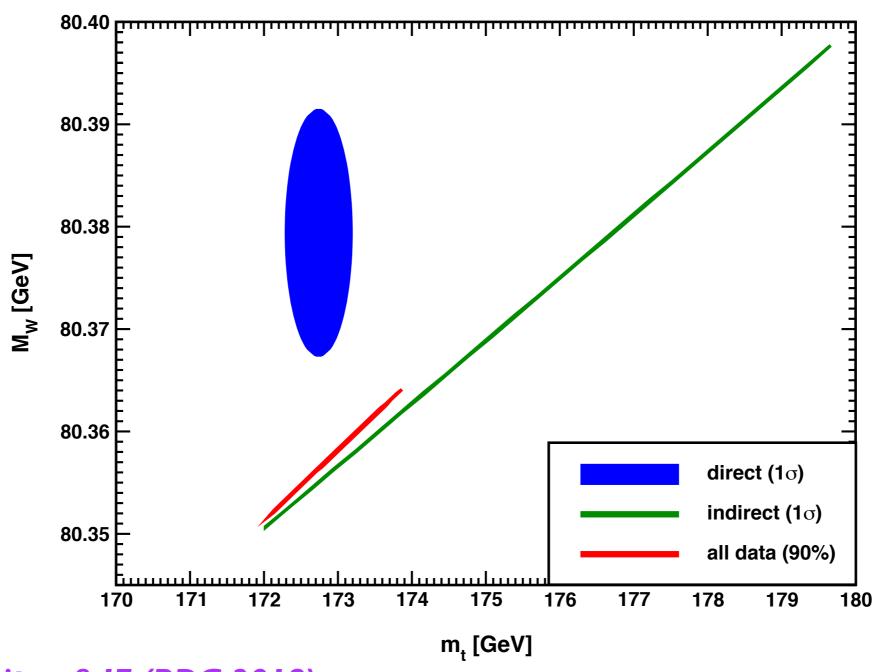
- Z-Z' mixing: modification of Z vector coupling
- \blacksquare oblique parameters: STU (also need M_W and Γ_Z)
- \blacksquare new amplitudes: off- versus on-Z pole measurements (e.g. Z')
- dark Z: renormalization group evolution (running)

Mw measurements

m_t measurements

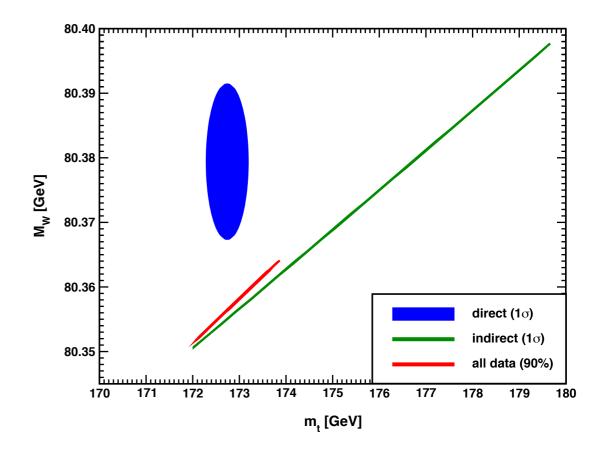
	central	statistical	systematic	total
Tevatron	174.30	0.35	0.54	0.64
ATLAS	172.51	0.27	0.42	0.50
CMS	172.43	0.13	0.46	0.48
CMS Run 2	172.25	0.08	0.62	0.63
grand	172.74	0.11	0.31	0.33

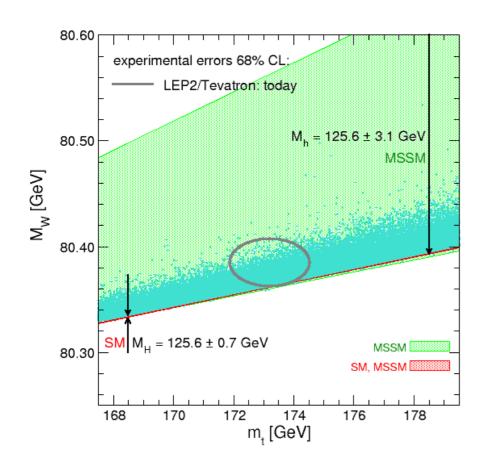
JE, EPJC 75 (2015)

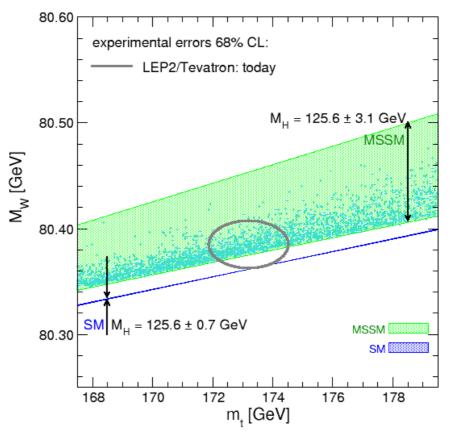

- $m_t = 172.74 \pm 0.25_{uncorr.} \pm 0.21_{corr.} \pm 0.32_{QCD} \text{ GeV} = 172.74 \pm 0.46 \text{ GeV}$
- somewhat larger shifts and smaller errors conceivable in the future Butenschoen et al., PRL 117 (2016); Andreassen & Schwartz, JHEP 10 (2017)
- \blacksquare 2.8 σ discrepancy between lepton + jet channels from DØ and CMS Run 2
- indirectly from EW fit: $m_t = 176.4 \pm 1.8 \text{ GeV} (2 \text{ G})$ Freitas & JE (PDG 2018)

top "pole mass measurements"

	Есм	analysis	value	uncertainty
DØ	I.96 TeV	inclusive $\sigma(t\overline{t})$	172.8	3.3
ATLAS	7+8 TeV	inclusive $\sigma(t\overline{t})$	172.9	2.6
CMS	7+8 TeV	inclusive $\sigma(t\overline{t})$	173.8	1.8
CMS	I3 TeV	inclusive $\sigma(t\overline{t})$	170.6	2.7
DØ	I.96 TeV	differential p _t	169.1	2.5
ATLAS	7 TeV	differential σ(tt+1jet)	173.7	2.2
CMS	8 TeV	differential σ(tt+1jet)	169.9	4. I
ATLAS	8 TeV	e± μ∓ σ(tt̄)	173.2	1.6
average			172.9	1.0

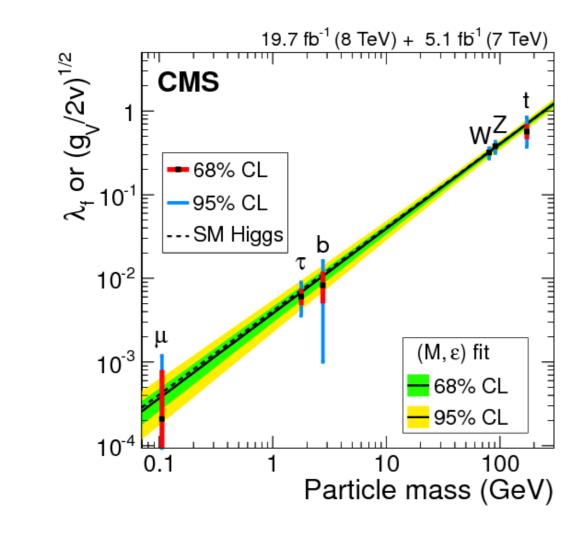

 σ difference to EW fit $m_t = 176.4 \pm 1.8$ GeV reduces to 1.7 σ

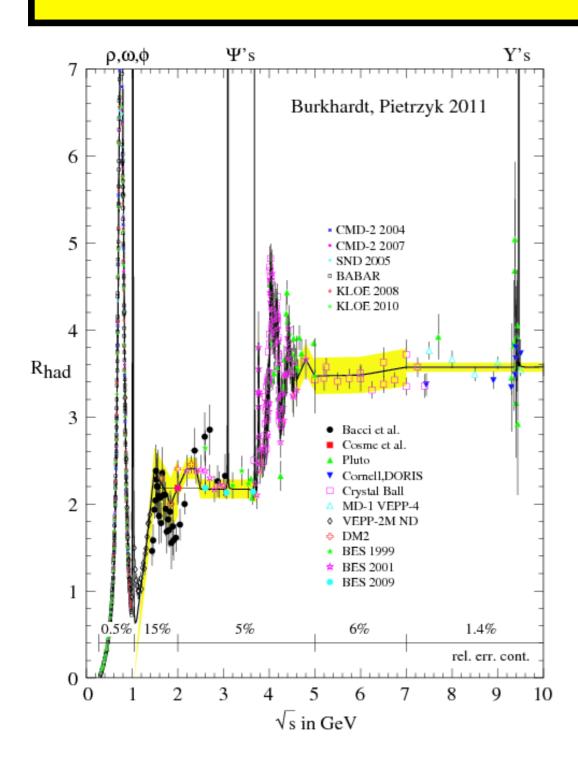

$M_W - m_t$



Freitas & JE (PDG 2018)

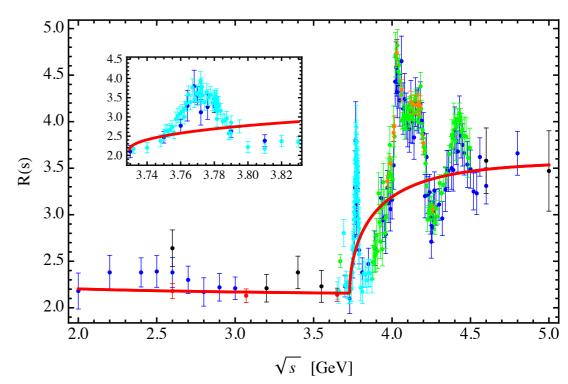
Mw in the MSSM




Heinemeyer, Hollik, Weiglein, Zeune 2013

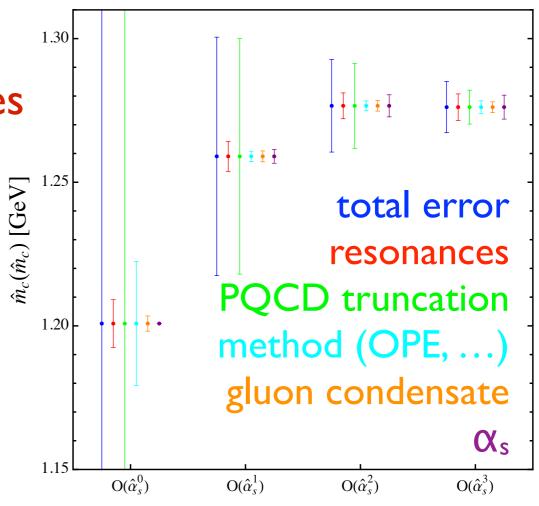
m_c

- $\alpha(M_Z)$ and $\sin^2\theta_W(0)$: can use PQCD for heavy quark contribution if masses are known.
- g=2: c quark contribution to muon g=2 similar to γ×γ; ± 70 MeV uncertainty in m_c induces an error of ± 1.6 × 10⁻¹⁰ comparable to the projected errors for the FNAL and J-PARC experiments.
- Yukawa coupling mass relation (in single Higgs doublet SM): $\Delta m_b = \pm 9$ MeV and $\Delta m_c = \pm 8$ MeV to match precision from HiggsBRs @ FCC-ee
- QCD sum rule: m_c = 1272 ± 8 MeV Masjuan, Spiesberger & JE, EPJC 77 (2017) (expect about twice the error for m_b)


m_c

- $\alpha(M_Z)$ and $\sin^2\theta_W(0)$: can use PQCD for heavy quark contribution if masses are known.
- g-2: c quark contribution to muon g-2 similar to $\gamma \times \gamma$; \pm 70 MeV uncertainty in m_c induces an error of \pm 1.6 \times 10⁻¹⁰ comparable to the projected errors for the FNAL and J-PARC experiments.
- Yukawa coupling mass relation (in single Higgs doublet SM): $\Delta m_b = \pm 9$ MeV and $\Delta m_c = \pm 8$ MeV to match precision from HiggsBRs @ FCC-ee
- QCD sum rule: m_c = 1272 ± 8 MeV Masjuan, Spiesberger & JE, EPJC 77 (2017) (expect about twice the error for m_b)

Features of our approach


- only experimental input: electronic widths of J/ ψ and $\psi(2S)$
- continuum contribution from self-consistency between sum rules
- include M₀ →
 stronger (milder) sensitivity
 to continuum (m_c)
- quark-hadron duality needed only in finite region (not locally)

 $\overline{m}_c(\overline{m}_c) = 1272 \pm 8 + 2616 \left[\overline{\alpha}_s(M_Z) - 0.1182 \right] \text{ MeV}$ Masjuan, Spiesberger & JE, EPJC 77 (2017)

Features of our approach

- only experimental input: electronic widths of J/ ψ and $\psi(2S)$
- continuum contribution from self-consistency between sum rules
- include M₀ →
 stronger (milder) sensitivity
 to continuum (m_c)
- quark-hadron duality needed only in finite region (not locally)

 $\overline{m}_c(\overline{m}_c) = 1272 \pm 8 + 2616 \left[\overline{\alpha}_s(M_Z) - 0.1182 \right] \text{ MeV}$ Masjuan, Spiesberger & JE, EPJC 77 (2017)

Gauge Couplings at Lower Energies

α_s from T decays

$$\tau_{\tau} = \hbar \frac{1 - \mathcal{B}_{\tau}^{s}}{\Gamma_{\tau}^{e} + \Gamma_{\tau}^{\mu} + \Gamma_{\tau}^{ud}} = 290.75 \pm 0.36 \text{ fs},$$

$$\Gamma_{\tau}^{ud} = \frac{G_{F}^{2} m_{\tau}^{5} |V_{ud}|^{2}}{64\pi^{3}} S\left(m_{\tau}, M_{Z}\right) \left(1 + \frac{3}{5} \frac{m_{\tau}^{2} - m_{\mu}^{2}}{M_{W}^{2}}\right) \times$$

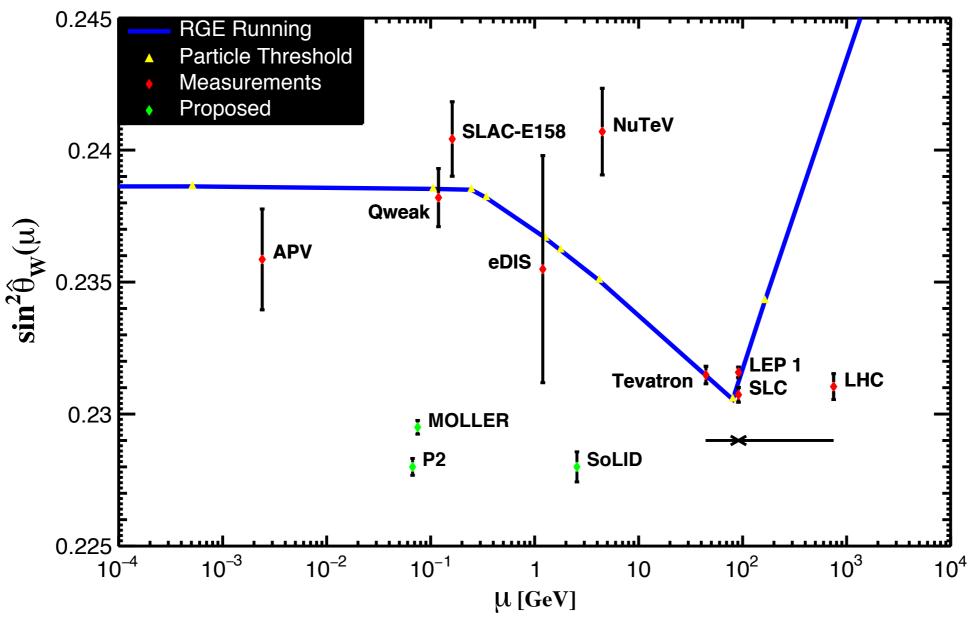
$$\left[1 + \frac{\alpha_{s} \left(m_{\tau}\right)}{\pi} + 5.202 \frac{\alpha_{s}^{2}}{\pi^{2}} + 26.37 \frac{\alpha_{s}^{3}}{\pi^{3}} + 127.1 \frac{\alpha_{s}^{4}}{\pi^{4}} + \frac{\widehat{\alpha}}{\pi} \left(\frac{85}{24} - \frac{\pi^{2}}{2}\right) + \delta_{\text{NP}}\right]$$

- T_T result includes leptonic branching ratios
- $\mathcal{B}_{\mathsf{T}}^{\mathsf{s}} = 0.0292 \pm 0.0004 \, (\Delta \mathsf{S} = -1) \, PDG \, 2018$
- $S(m_T, M_Z) = 1.01907 \pm 0.0003$ JE, Rev. Mex. Fis. 50 (2004)
- δ_{NP} = 0.003 ± 0.009 (within OPE & OPE breaking) based on (controversial) Boito et al., PRD 85 (2012) & PRD 91 (2015); Davier et al., EPJC 74 (2014); Pich & Rodríguez-Sánchez, PRD 94 (2016)

α_s from T decays

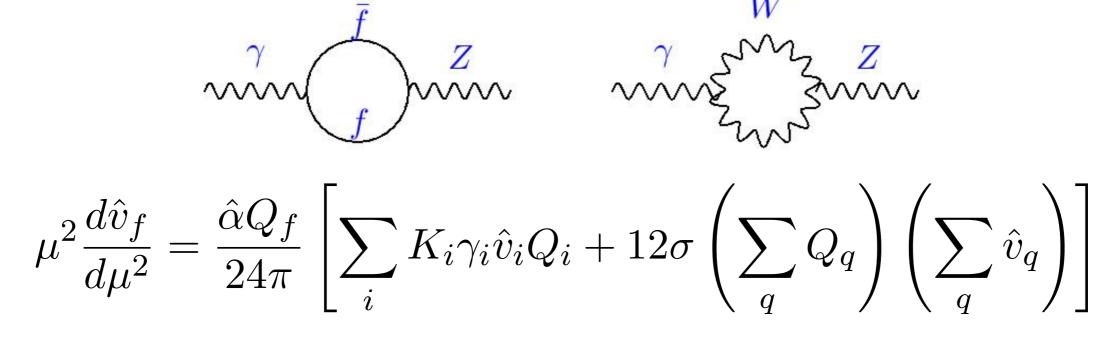
$$\tau_{\tau} = \hbar \frac{1 - \mathcal{B}_{\tau}^{s}}{\Gamma_{\tau}^{e} + \Gamma_{\tau}^{\mu} + \Gamma_{\tau}^{ud}} = 290.75 \pm 0.36 \text{ fs},$$

$$\Gamma_{\tau}^{ud} = \frac{G_{F}^{2} m_{\tau}^{5} |V_{ud}|^{2}}{64\pi^{3}} S\left(m_{\tau}, M_{Z}\right) \left(1 + \frac{3}{5} \frac{m_{\tau}^{2} - m_{\mu}^{2}}{M_{W}^{2}}\right) \times$$

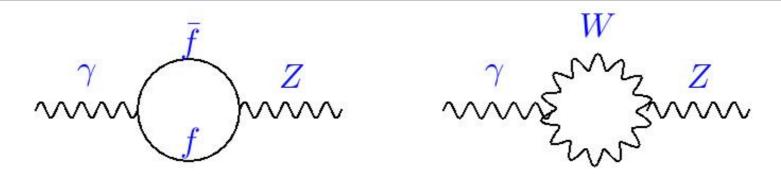

$$\left[1 + \frac{\alpha_{s} \left(m_{\tau}\right)}{\pi} + 5.202 \frac{\alpha_{s}^{2}}{\pi^{2}} + 26.37 \frac{\alpha_{s}^{3}}{\pi^{3}} + 127.1 \frac{\alpha_{s}^{4}}{\pi^{4}} + \frac{\widehat{\alpha}}{\pi} \left(\frac{85}{24} - \frac{\pi^{2}}{2}\right) + \delta_{\text{NP}}\right]$$

- dominant uncertainty from PQCD truncation (FOPT vs. CIPT vs. geometric continuation)
- $\alpha_{S}^{(4)}(m_{\tau}) = 0.323^{+0.018}_{-0.014}$
- $\alpha_{S}(5)(M_Z) = 0.1184^{+0.0020}_{-0.0018}$
- updated from Luo & JE, PLB 558 (2003) in Freitas & JE (PDG 2018)

$\alpha(M_Z)$


- Dispersive approach:
 - $\alpha^{-1}(M_Z) = 128.947 \pm 0.012$ Davier et al., EPJC 77 (2017)
 - $\alpha^{-1}(M_Z) = 128.958 \pm 0.016$ Jegerlehner, arXiv:1711.06089
 - $\alpha^{-1}(M_Z) = 128.946 \pm 0.015$ Keshavarzi et al., arXiv:1802.02995
- $\alpha^{-1}(M_Z) = 128.949 \pm 0.010$ Ferro-Hernández & JE, JHEP 03 (2018)
 - This value is converted from the MS scheme and uses both e+e-annihilation and T decay spectral functions Davier et al., EPJC 77 (2017)
 - T data corrected for γ - ρ mixing Jegerlehner & Szafron, EPJC 71 (2011)
 - PQCD for $\sqrt{s} > 2$ GeV (using \overline{m}_c & \overline{m}_b) Ferro-Hernández & JE, in preparation

$\sin^2\theta_W(\mu)$


Ferro-Hernández & JE, JHEP 03 (2018)

$\sin^2\theta_W(0)$: RGE

- v_f: Z vector coupling to fermion f
- K_i : QCD factor known to $O(\alpha_S^4)$ Baikov et al., JHEP 07 (2012)
- σ : singlet piece at $O(\alpha_S^3)$ and $O(\alpha_S^4)$ Baikov et al., JHEP 07 (2012)
- γ_i: field type dependent constants Ramsey-Musolf & JE, PRD 72 (2005)

$\sin^2\theta_W(0)$ and $\Delta\alpha(M_Z)$

$$\mu^2 \frac{d\hat{v}_f}{d\mu^2} = \frac{\hat{\alpha}Q_f}{24\pi} \left[\sum_i K_i \gamma_i \hat{v}_i Q_i + 12\sigma \left(\sum_q Q_q \right) \left(\sum_q \hat{v}_q \right) \right]$$

compare with

$$\mu^2 \frac{d\hat{\alpha}}{d\mu^2} = \frac{\hat{\alpha}^2}{\pi} \left[\frac{1}{24} \sum_i K_i \gamma_i Q_i^2 + \sigma \left(\sum_q Q_q \right)^2 \right]$$

coupled system of differential equations

Ramsey-Musolf & JE, PRD 72 (2005)

$\sin^2\theta_W(0)$: result

source	uncertainty in sin²θw(0)	
$\Delta \alpha^{(3)}$ (2 GeV)	1.2×10 ⁻⁵	
flavor separation	1.0×10 ⁻⁵	
isospin breaking	0.7×10 ⁻⁵	
singlet contribution	0.3×10 ⁻⁵	
PQCD	0.6×10 ⁻⁵	
Total	I.8×I0 ⁻⁵	

 \Rightarrow $\sin^2\theta_W(0) = 0.23861 \pm 0.00005_{Z-pole} \pm 0.00002_{theory} \pm 0.00001_{\alpha s}$ Ferro-Hernández & JE, JHEP 03 (2018); Freitas & JE, PDG 2018

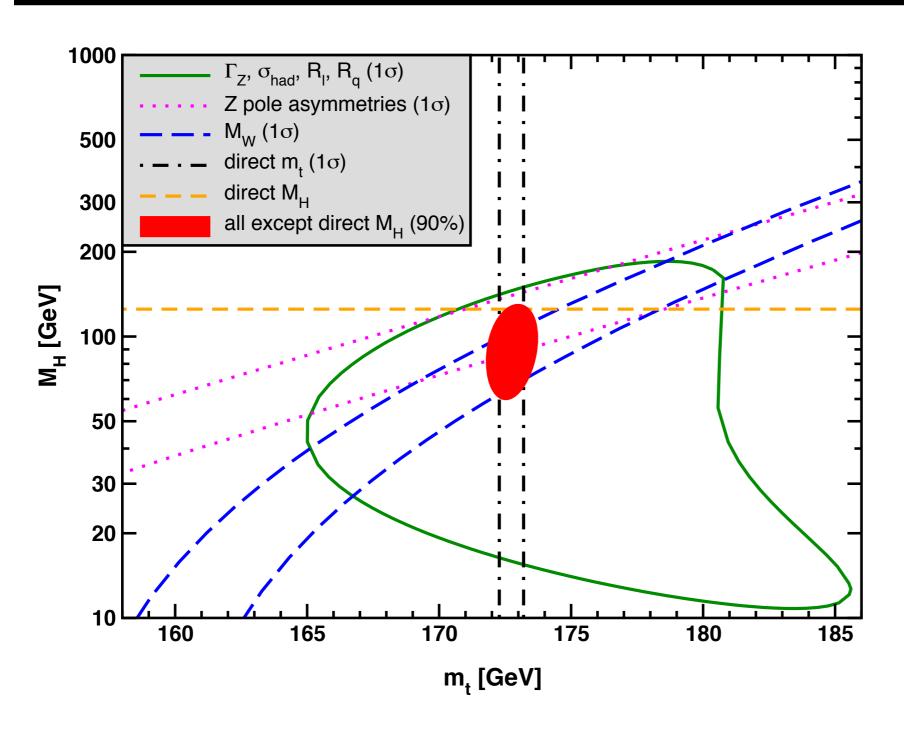
Electroweak Fits

Performed with package Global Analysis of Particle Properties (GAPP)

Inputs

- 5 inputs needed to fix the bosonic sector of the SM:
 SU(3) × SU(2) × U(1) gauge couplings and 2 Higgs parameters
- fine structure constant: α e.g. from the Rydberg constant (leaves g_e-2 as derived quantity and extra SM test)
- Fermi constant: G_F from PSI (muon lifetime)
- Z mass: Mz from LEP
- Higgs mass: M_H from the LHC
- \blacksquare strong coupling constant: $\alpha_s(M_Z)$ is fit output

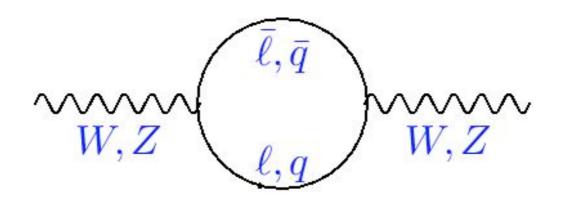
Standard global fit


M _H	125.14 ± 0.15 GeV	
Mz	91.1884 ± 0.0020 GeV	
$\overline{\mathbf{m}}_{b}(\overline{\mathbf{m}}_{b})$	4.180 ± 0.021 GeV	
$\Delta \alpha_{had}^{(3)}(2 \text{ GeV})$	(59.0 ± 0.5)×10 ⁻⁴	

$\overline{m}_{t}(\overline{m}_{t})$	163.28 ± 0.44 GeV	1.00	-0.13	-0.28
$\overline{m}_{c}(\overline{m}_{c})$	1.275 ± 0.009 GeV	-0.13	1.00	0.45
$\alpha_s(M_Z)$	0.1187 ± 0.0016	-0.28	0.45	1.00

other correlations small

Freitas & JE, PDG 2018

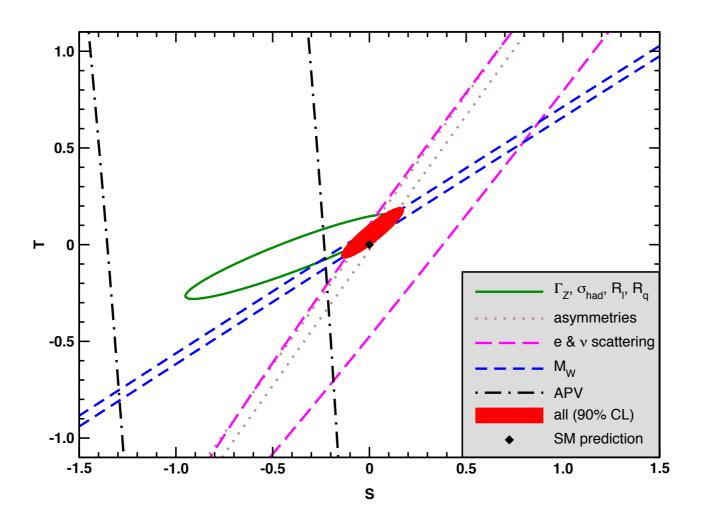

$M_H - m_t$

indirect M_H : 90^{+17}_{-16} GeV (1.9 σ low)

indirect m_t : 176.4 ± 1.8 GeV (2.0 σ high)

Oblique physics beyond the SM

- STU describe corrections to gauge-boson self-energies
- T breaks custodial SO(4)
- a multiplet of heavy degenerate chiral fermions contributes $\Delta S = N_C/3\pi \sum_i [t_{3L^i} t_{3R^i}]^2$
- extra degenerate fermion family yields $\Delta S = 2/3\pi \approx 0.21$
- S and T (U) correspond to dimension 6 (8) operators


Po fit

- $\Delta \rho_0 = G_F \sum_i C_i / (8\sqrt{2\pi^2}) \Delta m_i^2$
 - where $\Delta m_i^2 \ge (m_1 m_2)^2$
 - despite appearance there is decoupling (see-saw type suppression of Δm_i^2)
- $\rho_0 = 1.00039 \pm 0.00019 (2.0 \sigma)$
 - $(16 \text{ GeV})^2 \leq \sum_i C_i/3 \Delta m_i^2 \leq (48 \text{ GeV})^2 @ 90\% \text{ CL}$
 - Y = 0 Higgs triplet VEVs v_3 strongly disfavored ($\rho_0 < 1$)
 - consistent with |Y| = I Higgs triplets if $v_3 \sim 0.01 v_2$

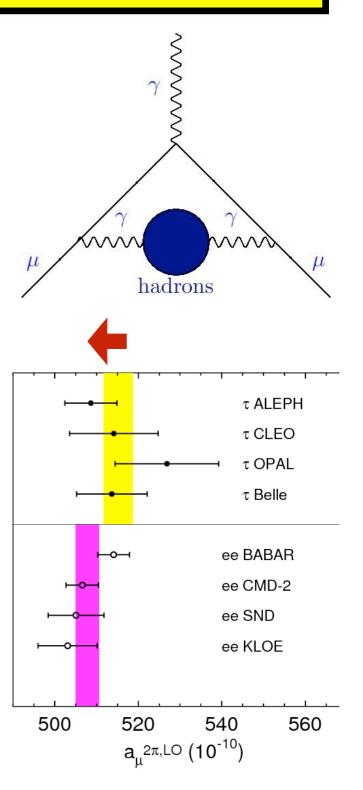
S fit

- S parameter rules out QCD-like technicolor models
- S also constrains extra <u>degenerate</u> fermion families:
 - \rightarrow N_F = 2.75 ± 0.14 (assuming T = U = 0)
 - compare with $N_v = 2.991 \pm 0.007$ from Γ_Z

S and T

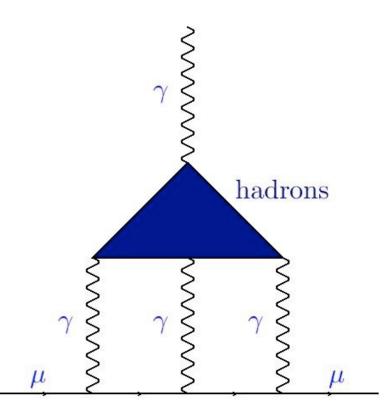
S	0.02 ± 0.07
Т	0.06 ± 0.06
$\Delta \chi^2$	- 4.2

- $\blacksquare \ M_{KK} \gtrsim 3.2 \, \text{TeV in warped extra dimension models}$
- $M_V \approx 4 \, \text{TeV}$ in minimal composite Higgs models Freitas & JE (PDG 2018)


Conclusions

- The SM is 50 years old and in great health immortal?
- ICHEP 2018: new ATLAS result based on 8 TeV data
 - $= \sin^2\theta_W = 0.23140 \pm 0.00036$
 - agrees well with SM and world average
- small tension in M_W
 - \blacksquare surely only 2 σ ... but in a very special observable
 - simplest possibility: $\rho_0 > 1$
- Precision in $sin^2\theta_W$ (A_{FB}) & M_W and future polarized e⁻ scattering experiments at low Q² challenge theory → needs major global effort

Backups


g_μ – 2

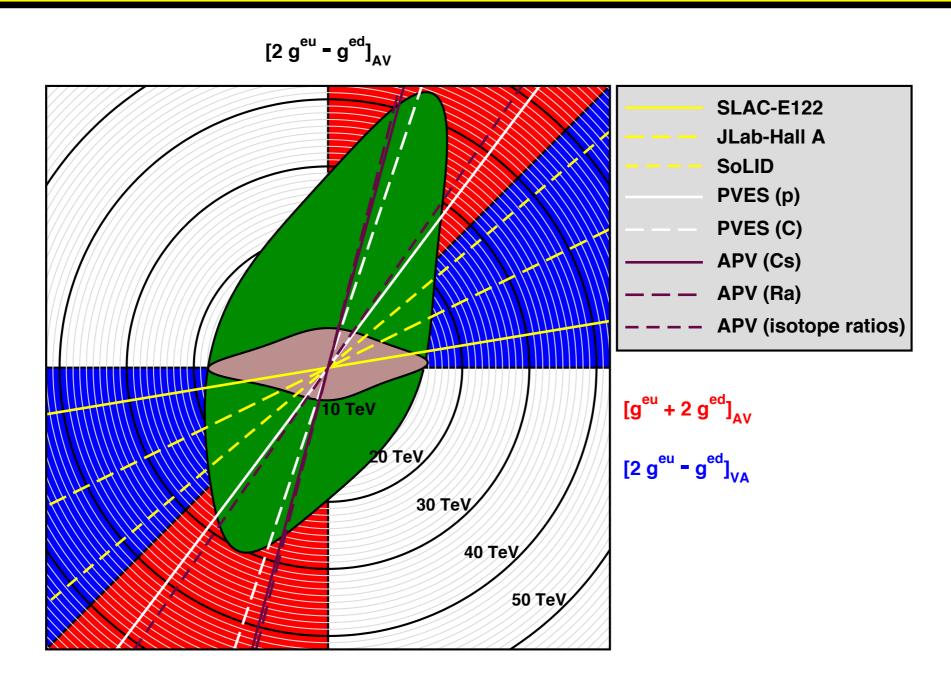
- $a_{\mu} = (1165920.91 \pm 0.63) \times 10^{-9} \text{ BNL-E821 2004}$
- SM: a_{μ} = (1165917.63 ± 0.46)×10⁻⁹ (4.2 σ)
- hadronic vacuum polarization (VP): use data + PQCD Luo, JE 2002 (mc and mb needed)
- consistency between experimental $B(T^- \to V \pi^0 \pi^-)$ and prediction from e^+e^- and CVC after accounting for Y- ρ mixing Jegerlehner, Szafron 2011

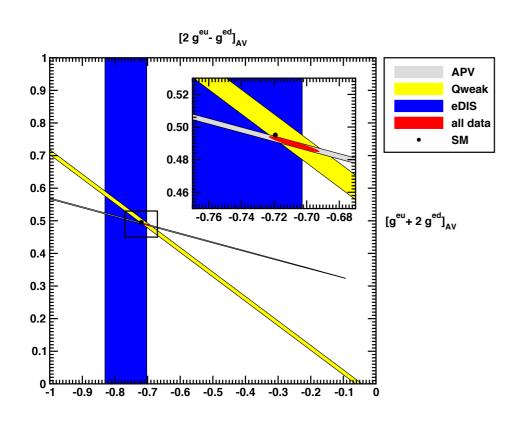
g_µ – 2 theory prospects

- VP in space-like region from Bhabba Carloni Calame et al. 2015 and µe-scattering Abbiendi et al. 2016 using $a_{\mu}^{had} = \alpha/\pi \int dx \, (I-x) \, \Delta\alpha_{had} [x^2 \, m_{\mu}^2/(x-I)] \, Lautrup \, et \, al. \, 1972$
- hadronic $\gamma \times \gamma$ error: $\pm 0.32 \times 10^{-9}$ (30%)
- lattice:
 - 5% statistical error (systematic error under investigation)
 - only quark-connected diagrams
 - \blacksquare cross-check: calculation of muonic $\gamma \times \gamma$ agrees within 2%
 - VP: also few % errors (~I year to achieve sub-%?)

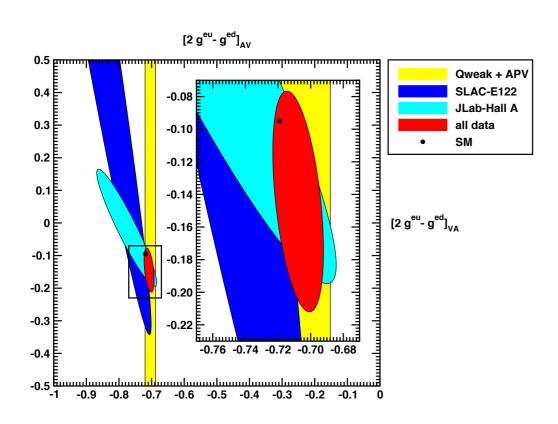
gu-2 hadronic effects

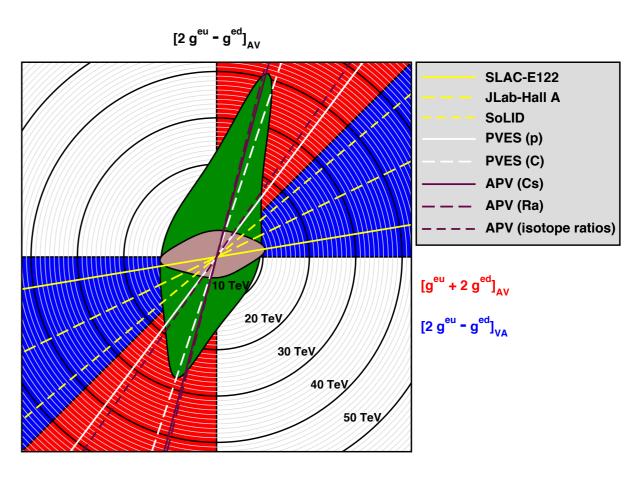
- $a_{\mu}^{\text{had,LO}} = (69.31 \pm 0.34) \times 10^{-9}$ Davier et al., EPJC 77 (2017)
- $a_{\mu}^{\text{had,LO}} = (68.81 \pm 0.41) \times 10^{-9}$ Jegerlehner, EPJ Web Conf. 166 (2018)
- $a_{\mu}^{\text{had,LO}} = (68.88 \pm 0.34) \times 10^{-9} \text{ (incl. T data) Jegerlehner, EPJ Web Conf. 166 (2018)}$
- $a_{\mu}^{\text{had,LO}} = (69.33 \pm 0.25) \times 10^{-9}$ Keshavarzi et al., arXiv:1802.02995
- $= a_{\mu}^{had,NLO} = (-1.01 \pm 0.01) \times 10^{-9}$ (anti-correlated with $a_{\mu}^{had,LO}$) Krause, PLB 390 (1997)
- $a_{\mu}^{\text{had,NNLO}} = (0.124 \pm 0.001) \times 10^{-9}$ Kurz et al., EPJ Web Conf. 118 (2016)
- $a_{\mu}^{\text{had,LBLS}}(\alpha^3) = (1.05 \pm 0.33) \times 10^{-9} (\overline{m}_c \text{ treatment!}) \text{ Toledo-Sánchez & JE, PRL 97 (2006)}$
- $a_{\mu}^{\text{had,LBLS}}(\alpha^4) = (0.03 \pm 0.02) \times 10^{-9}$ Colangelo et al., PLB 735 (2014)
- a_{μ} (exp.) $-a_{\mu}$ (SM) = $(2.55 \pm 0.77) \times 10^{-9}$ (3.3 σ) Freitas & JE, PDG 2018

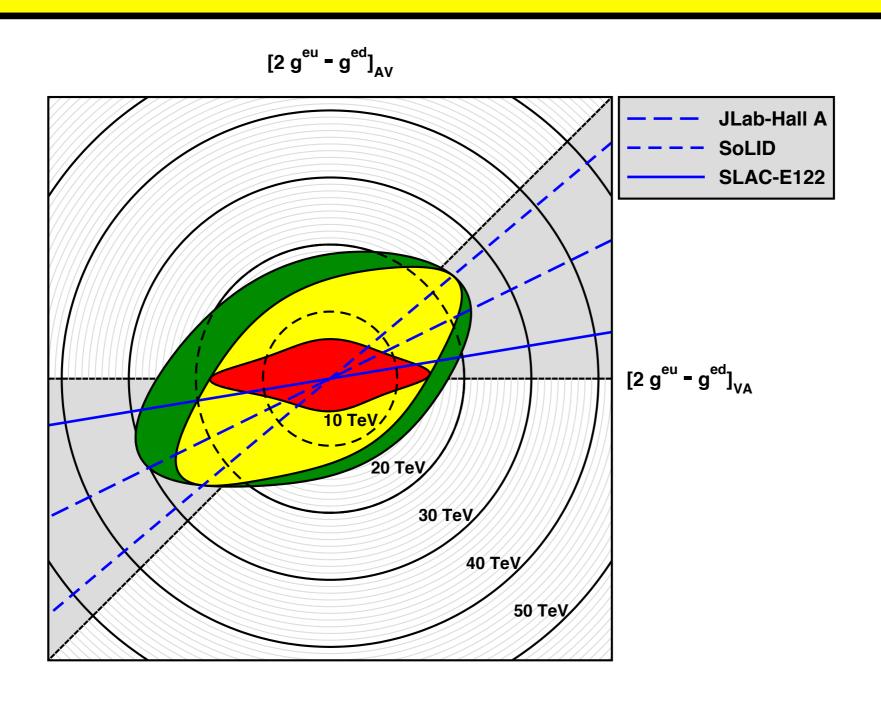

STU fit


$sin^2\theta_W(M_Z)$	0.23113 ± 0.00014	
$\alpha_s(M_z)$	0.1189 ± 0.0016	

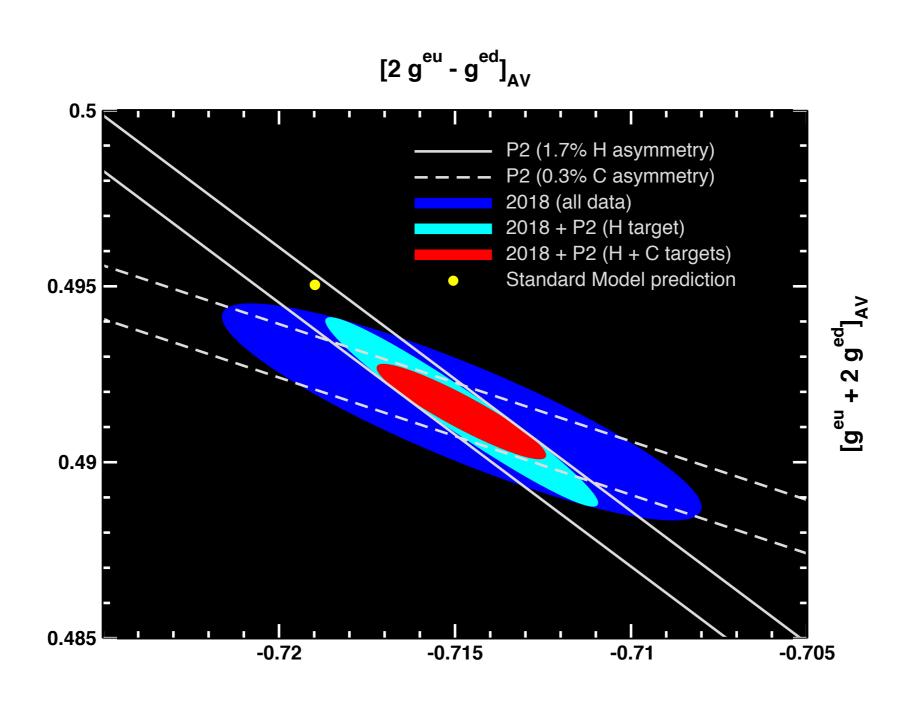
S	0.02 ± 0.10	1.00	0.92	-0.66
Т	0.07 ± 0.12	0.92	1.00	-0.86
U	0.00 ± 0.09	-0.66	-0.86	1.00

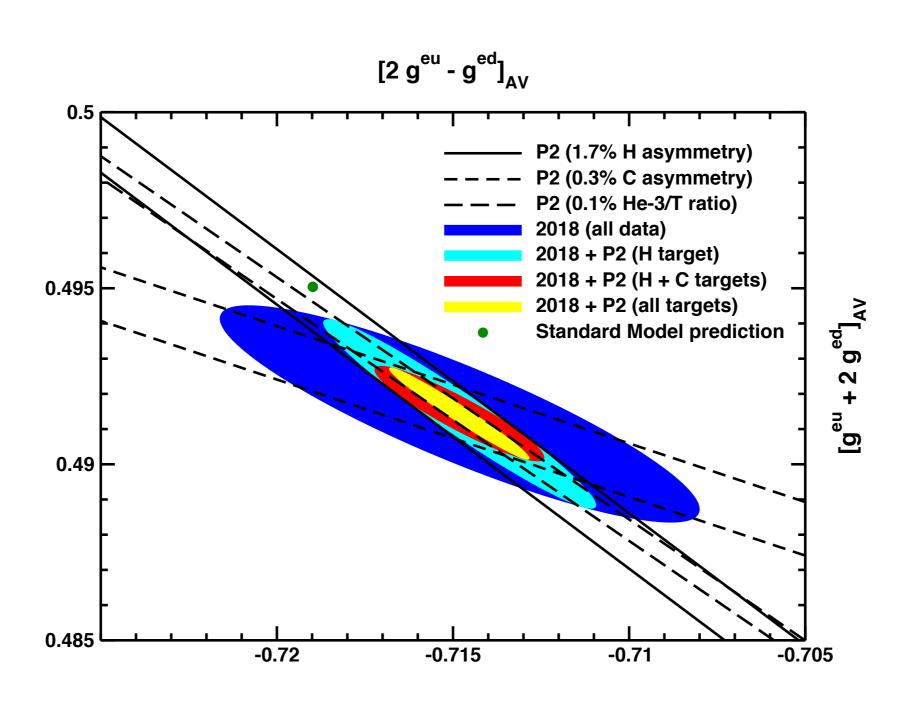

- $\blacksquare \ M_{KK} \gtrsim 3.2 \, \text{TeV in warped extra dimension models}$
- $M_V \approx 4 \, \text{TeV}$ in minimal composite Higgs models Freitas & JE (PDG 2018)


Scale exclusions post Qweak



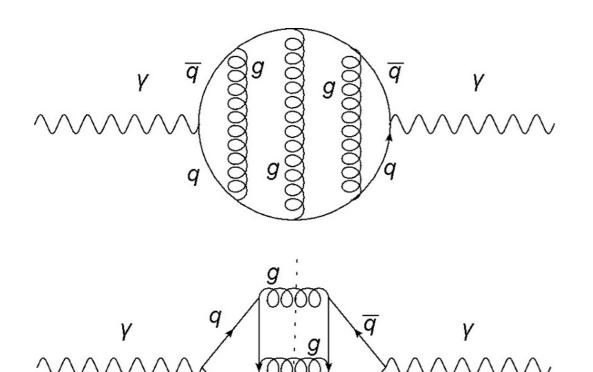
Compositeness scales from low energies

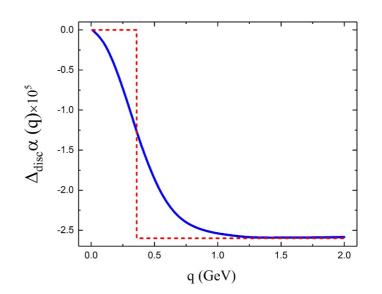



Scale exclusions pre-SoLID / P2

Effective couplings

Effective couplings




$\sin^2\theta_W(0)$: RGE solution

$$\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0}) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right] + \frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_{2}}{3} \ln \frac{\mu^{2}}{\mu_{0}^{2}} + \frac{3\lambda_{3}}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \tilde{\sigma}(\mu_{0}) - \tilde{\sigma}(\mu) \right]$$

- λ_i : rational numbers depending on active particle content of the EFT
- theory uncertainty from RGE running ~ I.6×I0⁻⁶ (negligible)
- theory error from b and c matching ~ 3×10^{-6} (again using \overline{m}_c & \overline{m}_b)
- we recycle the on-shell result for $\alpha(2 \text{ GeV})$ Davier et al., EPJC 77 (2017) → scheme conversion introducing 4.8×10^{-6} uncertainty
- total uncertainty from PQCD ~ 6×10^{-6} in $\sin^2\theta_W(0) = \overline{S}^2$

$\sin^2\theta_W(0)$: singlet separation

- use of result for $\alpha(2 \text{ GeV})$ needs singlet piece isolation $\Delta_{\text{disc}} \alpha(2 \text{ GeV})$
- then $\Delta_{\text{disc}} \overline{S}^2 = (\overline{S}^2 \pm 1/20) \Delta_{\text{disc}} \alpha(2 \text{ GeV}) = (-6 \pm 3) \times 10^{-6}$
- step function \Rightarrow singlet threshold mass $\overline{m}_s^{disc} \approx 350 \text{ MeV}$

$\sin^2\theta_W(0)$: flavor separation

strange quark external current	ambiguous external current	
Ф	KK (non – Φ)	
KKπ [almost saturated by Φ(1680)]	K K 2π, K K 3π	
ηΦ	ΚΚη, ΚΚω	

- use of result for $\alpha(2 \text{ GeV})$ also needs isolation of strange contribution $\Delta_s \alpha$
- left column assignment assumes OZI rule
- expect right column to originate mostly from strange current $(m_s > m_{u,d})$
- quantify expectation using averaged $\Delta_s(g_\mu-2)$ from lattices as Bayesian prior RBC/UKQCD, JHEP 04 (2016); HPQCD, PRD 89 (2014)
- $\Delta_s \alpha (1.8 \text{ GeV}) = (7.09 \pm 0.32) \times 10^{-4} \text{ (threshold mass } \overline{m}_s = 342 \text{ MeV} \approx \overline{m}_s^{\text{disc}})$