

Towards the observation of H→bb: Search for VH, H→bb decays with 80 fb⁻¹ of 13 TeV ATLAS data

<u>Ilaria Luise</u>, LPNHE - Paris

Higgs Hunting - Paris 23rd July 2018

On behalf of the ATLAS Collaboration

Introduction

Motivation: Why H→bb ?

- Direct measure of the Yukawa coupling to down type quarks
- Highest Branching Ratio (58%) in SM:
 - Fill the gap left for possible new physics
 - Reduce uncertainties on Higgs width and couplings

- Very nice results presented in Laurent's talk today:
 - VH observation!
 - H→bb observation!
- VH, H→bb is leading the sensitivity in these two results

This talk: focus on Run2 VH, H→bb measurement

- Analysis strategy + Signal&Bkg modeling
- Results @ 80 fb⁻¹
- *di-jet mass* analysis and *VZ, Z→bb* crosschecks

Channel	Significance		
Onanner	Exp.	Obs.	
VBF+ggF	0.9	1.5	
$t\bar{t}H$	1.9	1.9	
VH	5.1	4.9	
$H \rightarrow bb$ Combination	5.5	5.4	

Event Selection

- Exploit leptonic signatures for trigger, and suppression of multi-jet background.
- 3 channels (0, 1, 2 charged leptons)
- *Exactly 2 b-tagged jets (70% eff. WP).* Consider only 2-jet and 3-jet events (in 2-lepton \geq 3-jets).

O-lepton:

- Mainly $Z \rightarrow vv$ but also $W \rightarrow lnu$
- $p_T V = MET. \ p_T V > 150 \ GeV$

1-lepton (l=e,mu):

- Mainly $W \rightarrow lv$ but also $Z \rightarrow ll$
- $p_T = p_T (l, MET)$. $p_T > 150 \text{ GeV}$

2-lepton (l=e,mu):

- Same flavor, mainly $Z \rightarrow ll$
- $p_T = p_T(ll)$ [75,150] GeV, > 150 GeV

Signal and Background Modeling

· Very different background composition in the three channels:

ATLAS-CONF-2018-036

Ilaria Luise, LPNHE Paris - Higgs Hunting - 23rd July 2018

Table: variables used in BDT training

 $\equiv p_T^V$

Variable

 $\frac{m_{jj}}{\Delta R(jet_1, jet_2)}$

iet2

 $\frac{\Delta\phi(V,H)}{|\Delta\eta(jet_1,jet_2)|}$

 $M_{eff}(M_{eff3}) \ E_{
m T}^{
m miss}$

 $\min(\Delta \phi(\ell, jet)) \ m_{\mathrm{T}}^{W}$

 $\Delta Y(W,H)$

 $m_{\rm top}$

0-lepton 1-lepton

2-lepton

Multivariate Analysis

m_{bb} is the most discriminating variable for VHbb signal:

- Construct Boosted Decision Tree (BDT) of *several variables* to have better discrimination.
- m_{bb} , ΔR_{bb} and p_T^v are in order the most important variables. full table in backup
- Separate trainings for each channel and jet category.

Signal extraction method

Binned maximum likelihood fit to extract signal strength and normalization of main backgrounds:

- Fit the final BDT output for each SR
- 8 Signal Regions (SR): (0,1,2-lepton high pTV + low pTV in 2-lepton) × 2/3jet event
- **2 W+HF CRs in 1-lepton:** (high p_T^V) × 2/3jet event
- 4 top eµ CRs in 2-lepton: (high $p_TV + low p_TV$) × 2/3jet event

Control Region	W+HF	ttbar	
Channel	l-lepton	2-lepton	
Definition of the region	m _{top*} >225GeV && m _{bb} <75GeV	Require e μ final state	
Purity	75%	99%	
Fit observable	Yield only	т _{ьь}	
Purpose	Extract W+HF norm in 0+1 lep	Constrain m _{bb} shape systematics in 2-lep	

 Systematic uncertainties on shapes and relative normalizations are parametrized by nuisance parameters (NPs), constrained with priors (mostly from generator comparison).

The fit model: floating normalizations

ATLAS-CONF-2018-036

VH, H→bb fit results @ 80 fb⁻¹

4.9σ (**4.3**σ exp.)

$$\mu_{VH}^{bb} = 1.16^{+0.27}_{-0.25}$$

Run 2 results (2015+2016+2017):

Signal strength parameter	Signal strongth	Significance	
		Exp.	Obs.
0-lepton	$1.04^{+0.34}_{-0.32}$	3.1	3.3
1-lepton	$1.09^{+0.46}_{-0.42}$	2.4	2.6
2-lepton	$1.38_{-0.42}^{+0.46}$	2.6	3.4
$VH, H \to b\overline{b}$ combination	$1.16^{+0.27}_{-0.25}$	4.3	4.9

*Single channel: Combined fit with 3 signal strength

^{*}VH and WH: Combined fit with 2 signal strength

ATLAS-CONF-2018-036

Systematic uncertainties

EPS17: <u>HIGG-2016-29</u>

Validation: the VZ, $Z \rightarrow bb$ analysis @ 80 fb-1

Validate the BDT analysis:

- Same selection as VH
- Retrain the BDT (same hyper-param.) using:
 - Same backgrounds (+VH)
 - · VZ, $Z \rightarrow bb$ as signal
- Repeat the fit on BDT_VZ to extract VZ, $Z \rightarrow bb \mu$.

Fit to diboson VZ,
$$Z \rightarrow bb (\gg 5\sigma)$$
:

$$\mu_{VZ}^{bb} = 1.20^{+0.20}_{-0.18}$$

Signal strength compatible with SM as expected. analysis procedure is validated!

ATLAS-CONF-2018-036

Crosscheck: di-jet mass analysis

Analysis strategy:

- Fit the *m(bb)* **spectrum** of the **two jets system**.
- More regions: split in more p_T^v bins.
- Add extra cuts to suppress V+jets and ttbar.

The di-jet analysis is 27% (19% for exp.) less sensitive than the MVA analysis.

ATLAS-CONF-2018-036

Conclusions & Run1+Run2 Combination

Run2 VH, H→bb:

- MVA analysis: apply fit on BDT discriminant (14 regions in the fit: 8 SRs + 6 CRs)
- \cdot Signal strength compatible with SM expectation:

$$\mu_{VH}^{bb} = 1.16^{+0.27}_{-0.25}$$
 4.9 σ (4.3 σ exp.)

- Successful validation with VZ, Z→bb analysis
- Independent crosscheck with di-jet analysis compatible with MVA: $\mu_{VH}^{bb} = 1.06^{+0.36}_{-0.33}$ [3.6 σ obs.]
- Combination with Run1 results (20.3+4.7 fb⁻¹):

Backup

Full picture of the simultaneous fit:

Ilaria Luise, LPNHE Paris - Higgs Hunting - 23rd July 2018

BTagging in ATLAS

ATL-PHYS-PUB-2017-013

Ilaria Luise, LPNHE Paris - Higgs Hunting - 23rd July 2018

Event Selection

Table: same event selection as EPS 2017

Selection	0-lepton	1-lepton		2-lepton	
		e sub-channel	μ sub-channel		
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\rm T}^{\rm miss}$	Single lepton	
Leptons	0 loose leptons	1 tight electron 1 tight muon 2 loose		$2 \ loose \ leptons \ with \ p_{\rm T} > 7 \ { m GeV}$	
	with $p_{\rm T} > 7 {\rm ~GeV}$	$p_{\rm T} > 27~{\rm GeV}$	$p_{\rm T} > 25 {\rm ~GeV}$	≥ 1 lepton with $p_{\rm T} > 27 { m ~GeV}$	
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m GeV}$	_	—	
$m_{\ell\ell}$	_		_	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$	
Jets	Exactly 2 /	Exactly 3 jets		Exactly 2 / \geq 3 jets	
Jet $p_{\rm T}$	> 20 0	GeV for $ \eta < 2.5$ a	and $> 30 \text{ GeV}$ for 2.5	$5 < \eta < 4.5$	
<i>b</i> -jets	Exactly 2 <i>b</i> -tagged jets				
Leading <i>b</i> -tagged jet $p_{\rm T}$	> 45 GeV				
H_{T}	> 120 (2 jets), >150 GeV (3 jets)	—		—	
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$	—		_	
$\Delta \phi(ec{E}_{ m T}^{ m miss}, ec{bb})$	$> 120^{\circ}$	_		_	
$\Delta \phi(ec{b}_1,ec{b}_2)$	$< 140^{\circ}$	—		_	
$\Delta \phi(ec{E}_{ m T}^{ m miss},ec{E}_{ m T,trk}^{ m miss})$	$< 90^{\circ}$	—		—	
$p_{\rm T}^V$ regions	> 15	$> 150 { m ~GeV}$			
Signal regions	_	$m_{bb} \ge 75 \text{ GeV or } m_{top} \le 225 \text{ GeV}$		Same-flavour leptons	
				Opposite-sign charges ($\mu\mu$ sub-channel)	
Control regions	—	$m_{bb} < 75 \text{ GeV} \text{ and } m_{top} > 225 \text{ GeV}$		Different-flavour leptons	
				Opposite-sign charges	

Generators:

Process	ME generator	ME PDF	PS and	UE model	Cross-section ace2.5cm
			Hadronisation	tune	order
Signal, mass set to	b 125 GeV and $b\overline{b}$ branching fract	tion to 58%			
$qq \rightarrow WH$	Powheg-Box v2 $[55] +$	NNPDF3.0NLO ^(\star) [56]	Pythia8.212 [47]	AZNLO [57]	NNLO(QCD)+
$ ightarrow \ell u b \overline{b}$	GOSAM [58] + MINLO [59,60]				NLO(EW) [61,62,63,64,65,66,67]
$qq \rightarrow ZH$	Powheg-Box v2 +	$NNPDF3.0NLO^{(\star)}$	Pythia8.212	AZNLO	$NNLO(QCD)^{(\dagger)} +$
$ ightarrow u u b ar{b}/\ell \ell b ar{b}$	GOSAM + MINLO				NLO(EW)
$gg \to ZH$	Powheg-Box v2	$NNPDF3.0NLO^{(\star)}$	Pythia8.212	AZNLO	NLO+
$ ightarrow u u b \overline{b} / \ell \ell b \overline{b}$					NLL [68,69,70,71,72]
Top quark, mass se	et to 172.5 GeV				
$-t\overline{t}$	Powheg-Box v2 [73]	NNPDF3.0NLO	Pythia8.230	A14 [74]	NNLO+NNLL [75]
s-channel	Powheg-Box v2 [76]	NNPDF3.0NLO	Pythia8.230	A14	NLO [77]
t-channel	Powheg-Box v2 $[76]$	NNPDF3.0NLO	Pythia8.230	A14	NLO [78]
Wt	Powheg-Box v2 [79]	NNPDF3.0NLO	Pythia8.230	A14	Approximate NNLO [80]
Vector boson + jets					
$W \to \ell \nu$	Sherpa 2.2.1 [50,81,82]	NNPDF3.0NNLO	Sherpa 2.2.1 [83,84]	Default	NNLO [85]
$Z/\gamma^* \to \ell\ell$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
$Z \rightarrow \nu \nu$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
Diboson					
$qq \rightarrow WW$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
qq ightarrow WZ	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
qq ightarrow ZZ	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
$gg \to VV$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	Default	NLO

Systematic uncertainties:

Main sources of systematics:

- Experimental systematics:
 - B-tagging
 - jet energy calibration
- · Modeling of simulated background:
 - Normalization and shape mismodels in MC.
 - Obtained from comparison at truth level between different generators
- · Higgs theory related uncertainties:
 - Xsection and BR uncertainties
 - follow the recommendations of the LHC Higgs Cross Section working group

Signal systs:

Signal				
Cross section (scale)	0.7%~(qq),~27%~(gg)			
Cross section (PDF)	$1.9\% (qq \to WH), 1.6\% (qq \to ZH), 5\% (gg)$			
$H \to b\bar{b}$ branching ratio	1.7~%			
Acceptance from scale variations (var.)	2.5-8.8%			
Acceptance from PS/UE var. for 2 or more jets	2.9 - 6.2% (depending on lepton channel)			
Acceptance from PS/UE var. for 3 jets	1.8-11%			
Acceptance from PDF+ $\alpha_{\rm S}$ var.	0.5-1.3%			
$m_{bb}, p_{\rm T}^V$, from scale var.	S			
$m_{bb}, p_{\rm T}^V$, from PS/UE var.	S			
$m_{bb}, p_{\rm T}^V$, from PDF+ $\alpha_{\rm S}$ var.	S			
$p_{\rm T}^V$ from NLO EW correction	S			

Z + jets				
Z + ll normalisation	18%			
Z + cl normalisation	23%			
Z + HF normalisation	Floating (2-jet, 3-jet)			
Z + bc-to- $Z + bb$ ratio	30-40%			
Z + cc-to- $Z + bb$ ratio	13-15%			
Z + bl-to- $Z + bb$ ratio	20-25%			
0-to-2 lepton ratio	7%			
$m_{bb},p_{ m T}^V$	S			
	W + jets			
W + ll normalisation	32%			
W + cl normalisation	37%			
W + HF normalisation	Floating (2-jet, 3-jet)			
W + bl-to- $W + bb$ ratio	26% (0-lepton) and $23%$ (1-lepton)			
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)			
W + cc-to- $W + bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)			
0-to-1 lepton ratio	5%			
W + HF CR to SR ratio	10% (1-lepton)			
$m_{bb},p_{ m T}^V$	S			
$t\overline{t}$ (all are uncorrelated and the transformation of t	ated between the $0+1$ and 2 -lepton channels)			
$t\bar{t}$ normalisation	Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet)			
0-to-1 lepton ratio	8%			
2-to-3-jet ratio	9% (0+1 lepton only)			
W + HF CR to SR ratio	25%			
$m_{bb},p_{ m T}^V$	S			
Single top-quark				
Cross section	4.6% (s-channel), $4.4%$ (t-channel), $6.2%$ (Wt)			
Acceptance 2-jet	17% (t-channel), 55% ($Wt \rightarrow bb$), 24% ($Wt \rightarrow oth$)			
Acceptance 3-jet	20% (t-channel), 51% ($Wt \rightarrow bb$), 21% ($Wt \rightarrow oth$)			
$m_{bb},p_{ m T}^{\scriptscriptstyle V}$	S (t-channel, $Wt \to bb, Wt \to oth$)			
	Multi-jet (1-lepton)			
Normalisation	$60-100\%~(ext{2-jet}),~90-140\%~(ext{3-jet})$			
BDT template	S			

Background systs:

S = shape only syst

PS/UE = parton shower/ underlying event.

Ilaria Luise, LPNHE Paris - Higgs Hunting - 23rd July 2018

Diboson Systematic uncertainties:

Extra systematics uncertainties for Diboson Validation analysis only:

ZZ			
Normalisation	20%		
0-to-2 lepton ratio	6%		
Acceptance from scale variations (var.)	10-18%		
Acceptance from PS/UE var. for 2 or more jets	6%		
Acceptance from PS/UE var. for 3 jets	7% (0-lepton), $3%$ (2-lepton)		
$m_{bb}, p_{\rm T}^V$, from scale var.	S (correlated with WZ uncertainties)		
$m_{bb}, p_{\rm T}^V, \text{ from PS/UE var.}$	S (correlated with WZ uncertainties)		
m_{bb} , from matrix-element var.	S (correlated with WZ uncertainties)		
WZ			
Normalisation	26%		
0-to-1 lepton ratio	11%		
Acceptance from scale var.	13-21%		
Acceptance from PS/UE var. for 2 or more jets	4%		
Acceptance from PS/UE var. for 3 jets	11%		
$m_{bb}, p_{\rm T}^V$, from scale var.	S (correlated with ZZ uncertainties)		
$m_{bb}, p_{\rm T}^V, \text{ from PS/UE var.}$	S (correlated with ZZ uncertainties)		
m_{bb} , from matrix-element var.	S (correlated with ZZ uncertainties)		
WW			
Normalisation	25%		

BDT variables

Variable	Name	0-lepton	1-lepton	2-lepton
m_{jj}	mBB	\checkmark	\checkmark	\checkmark
$\Delta R(jet_1, jet_2)$	dRBB	\checkmark	\checkmark	\checkmark
p_T^{jet1}	pTB1	\checkmark	\checkmark	\checkmark
$p_T^{ m jet2}$	pTB2	\checkmark	\checkmark	\checkmark
p_T^V	pTV	\checkmark	\checkmark	\checkmark
$\Delta \phi \left(V,H ight)$	dPhiVBB	\checkmark	\checkmark	\checkmark
$ \Delta \eta(jet_1, jet_2) $	dEtaBB	\checkmark		
$M_{eff}(M_{eff3})$	HT	\checkmark		
$E_{\mathrm{T}}^{\mathrm{miss}}$	MET	$\equiv p_T^V$	\checkmark	
$\min(\Delta \phi(\ell, jet))$	dPhiLBmin	-	\checkmark	
m_{T}^W	mTW		\checkmark	
$\Delta Y(W,H)$	dYWH		\checkmark	
$m_{\rm top}$	mTop		\checkmark	
$E_{\rm T}^{\rm miss}$ significance	METSig			\checkmark
$\Delta \eta \left(V,H ight)$	dEtaVBB			\checkmark
$m_{\ell\ell}$	mLL			\checkmark
	Only in 3 Jet Events			
$p_T^{\text{jet}_3}$	pTJ3	\checkmark	\checkmark	\checkmark
m_{jjj}	mBBJ	\checkmark	\checkmark	\checkmark

Table: from internal note

Ilaria Luise, LPNHE Paris - Higgs Hunting - 23rd July 2018

Ranking plot

