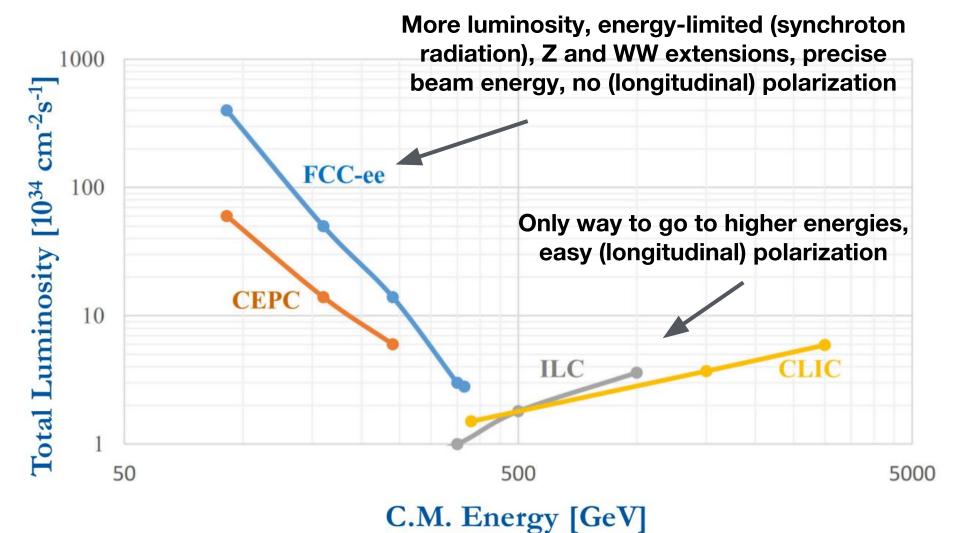
Discussion session: e⁺e⁻ colliders

Juan Alcaraz Maestre

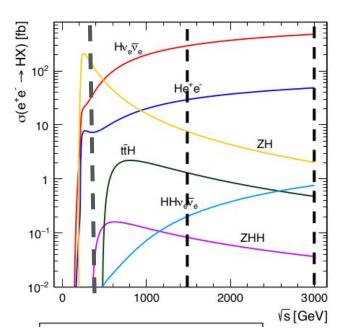
CIEMAT-Madrid

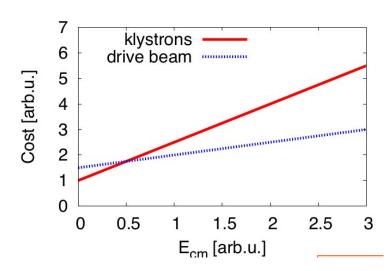
Higgs Hunting 2018 Workshop 25 July 2018


e⁺e⁻ colliders

Next step in the understanding of the nature of the Higgs sector of the SM (and whether they are deviations pointing to New Physics):

- More precision (percent | sub-percent) almost everywhere
- Measurement of sigma*BR(ee->ZH) without looking at the Higgs side => measuring the Higgs width
- "Model independent" approach (EFT)
- Sensistive measurement of the Higgs-self coupling, particularly at high energies (CLIC) + search for deviations from SM at high energies

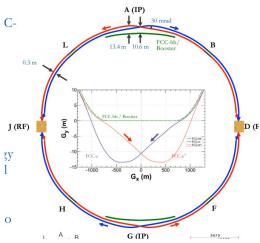

Circular vs linear (i.e. FCC-ee/CEPC vs ILC/CLIC)



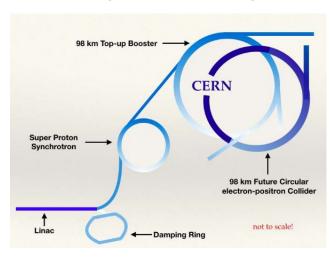
Updated baseline

√s [GeV]	⊥ _{int} [fb ⁻¹]
380	500
1500	1500
3000	3000

Mature technology. First step OK with klystrons

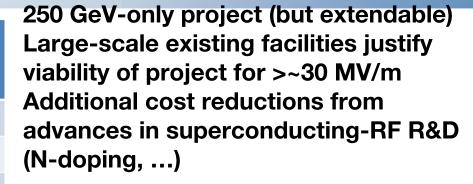

Successful reduction of power (~200 MW) and cost (~6 GCHF)

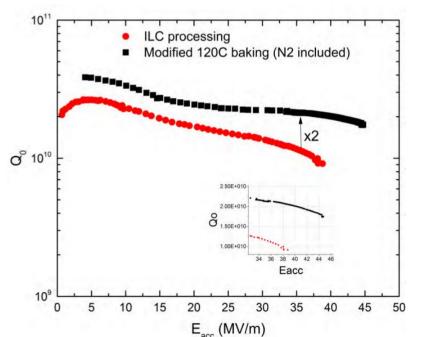
CLIC technology for CLIC and different applications


- EU co-funded FEL design study
- SPARC at INFN-LF

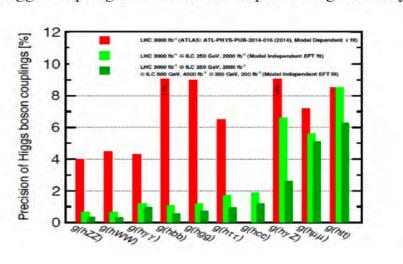
٠...

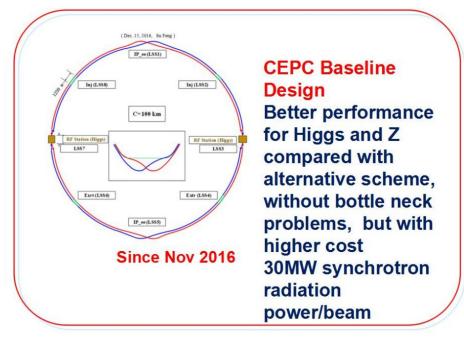
Double ring intersecting structure


Injection in main booster at 20 GeV


Parameter	FCC-ee		
	Baseline		
	(10 yrs)		
$\sigma(HZ)$	0.4%		
g _{zz}	0.15%		
g_{ww}	0.2%		
g _{bb}	0.4%		
g _{cc}	0.7%		
$g_{\tau\tau}$	0.5%		
$g_{t\bar{t}}$	13%		
$g_{\mu\mu}$	6.2%		
g _{ee}	<100%		
g _{ee}	0.8%		
g,,	1.5%		
$g_{z_{\gamma}}$	(
$\Delta m_{_{\rm H}}$	11 MeV		
$\Gamma_{\mathbf{H}}$	1.0%		
Γ_{inv}	<0.45%		

Community fully focused on the preparation of the CDR


	Collision E. [GeV]	Tunnel Space [GeV]	Value Total (MILCU)	Value Ratio
TDR	250/250	500	7,980	1
TDR update	250/250	500	7,950	0.96
Option A	125/125	250	5,260	0.66
Option A' (w/ R&D)	125/125	250	4,780 w/ R&D success	0.60


Effective Field Theory

With a new theoretical framework, expectations for the Higgs coupling measurements improved significantly.

J. Alcaraz, HH18, e⁺e⁻ discussion - 25 July 2018

Updated design end 2016, slightly different injection compared with FCC-ee

CDR Version for International Review June 2018

- CEPC hardware design and key technologies' R&D plan are ready for full TDR phase
- Developing of a coherent global plan towards completion of the project

Some theory comments (Tao's driven)

SM EFT:

- Systematic, complete list of higher-dim operators, $L = L_{SM} + \frac{1}{\Lambda^2} \sum_k \mathcal{O}_k + \cdots$ (in linear-realization, 2499 of them!)
- Correct power-counting, kinematic correlations
- $\mathcal{O}_{HW} = -i g_2 (D^{\mu} H)^{\dagger} \tau^I (D^{\nu} H) W_{\mu\nu}^I,$ $\mathcal{O}_W = -\frac{i g_2}{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu}^I H \right) (D^{\nu} W_{\mu \nu}^I),$ $\mathcal{O}_T = (H^\dagger \overleftrightarrow{D}^\mu H) \, (H^\dagger \overleftrightarrow{D}^\mu H).$

Definite relations with the **k** expressions

Although consistent in theoretical calculations, perhaps only necessary for interpretations when a signal observation is made.

How 'model independent' are we? Are not we imposing "artificial" dim-6 (many of them loop-driven) constraints in the game?

Remarks for Discussion:

e+e- Colliders:

- It is mainly on the experimental side for machine and detector performances.
- Higher order EW corrections may be needed for the Higgs production processes (e.g., Zh).

Some fast physics/detector questions

- √s ≅ 250 GeV
 - Are all the possibilities well "covered"?
 - For instance, los-mass Higgses
 - Couplings to first generation and "Higgs scan":
 - e⁺e⁻H coupling search with "huge" luminosity?
- Intermediate/high energies (ttbar threshold, 0.5-1 TeV, ..)
 - High-mass Higgses: holes left by HL-LHC?
 - H→ttbar?
- Highest √s, up to 3 TeV (CLIC)
 - Potential for Higgs self-coupling studies: forward region, more advanced studies
- Polarization
 - o More ideas?

Backup

Potentially rich program ahead:

HL-LHC / HE-LHC lead the way:

```
3 ab<sup>-1</sup> @ 14 TeV; 15 ab<sup>-1</sup> @ 27 TeV

LHeC

e(60 GeV) + p(7 TeV)@1 ab<sup>-1</sup>; e(60 GeV) + p(14 TeV)@2 ab<sup>-1</sup>
```

- ILC e⁺e⁻ 250 (500) GeV @ 2 (4) ab⁻¹, 80% / 30% polarization
- FCC(ee) / CEPC 250 / 240 GeV @ 5 / 20 ab⁻¹; 350 GeV @ 1 ab⁻¹
- CLIC
 380 GeV@0.5 ab⁻¹, 80% / 0% pol; 1.5 TeV@1.5 ab⁻¹; 3 TeV@3 ab⁻¹
- FCC(hh)
 100 TeV @ 30 ab⁻¹

 FCC(eh) e(60 GeV) + p(50 TeV) @ 2 ab⁻¹
- Muon Collider mh @ 1 fb⁻¹; 20 TeV @ 5 ab⁻¹

Timelines: CLIC

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

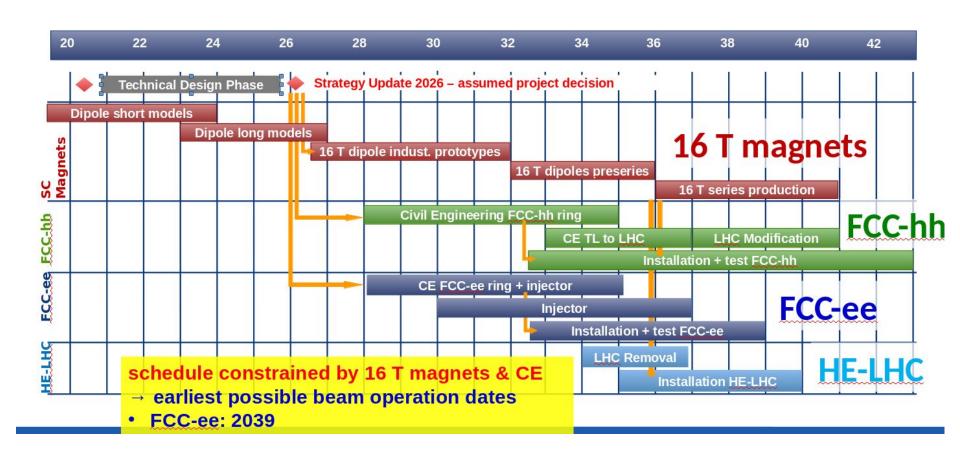
Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

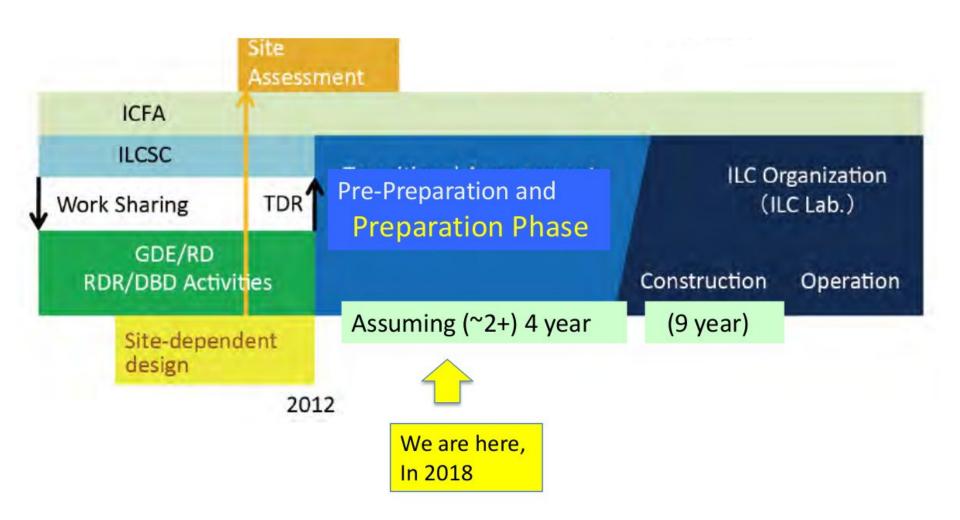
2025 Construction Start

Ready for construction; start of excavations



2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion



Timelines: FCC-ee

Timelines: ILC

Figure 12.5: A possible timeline.