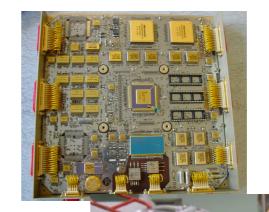
CMB Activities @LAL?

LAL is involved in CMB since ~20 years: we have been/are involved in Archeops, Planck, QUBIC, Thibaut is also in AdvACT.

Archeops

- * Responsible of the pointing reconstruction using the Stellar Sensor
- * Participation to the launch @Kiruna, calibration on-site and in Grenoble (on-ground calib: beam reco, detector response I(V), optical Xtalk,...)
- * Dev of Carbon fiber sources for optical Xtalk and time response measurements
- * Data analysis of flight data, Cl spectra, map reconstruction


Instrument&Calibration of Planck-HFI

* Responsible of the building/delivery (...)

Data Processing Unit of HFI

including compression algorithm [CQM/PFM and Flight spare]

- * Resp. for the instrumental setup of the Carbon fibers for Xtalk/time response measurements
- * Simulations for the integrating sphere
- * Participation in the calibration of the CQM, CSL tests, and PFM
- * Contribution to the upgrade of the Saturne cryostat
- * Responsible of the HFI Instrument Model, and the Instrumental Intrinsic Systematics effect WG for HFI up to 2006

CMB Activities @LAL?

Planck Data Analysis:

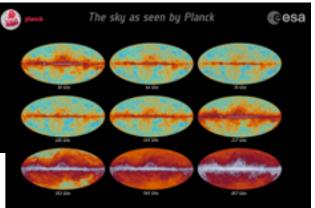
Map Making et in-flight calibration

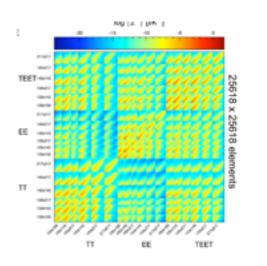
Study of the ADC non-linearities, time constant...

Responsables for the 2 releases 2013/2015

Reconstruction of spectra and likelihoods


CMB Lensing

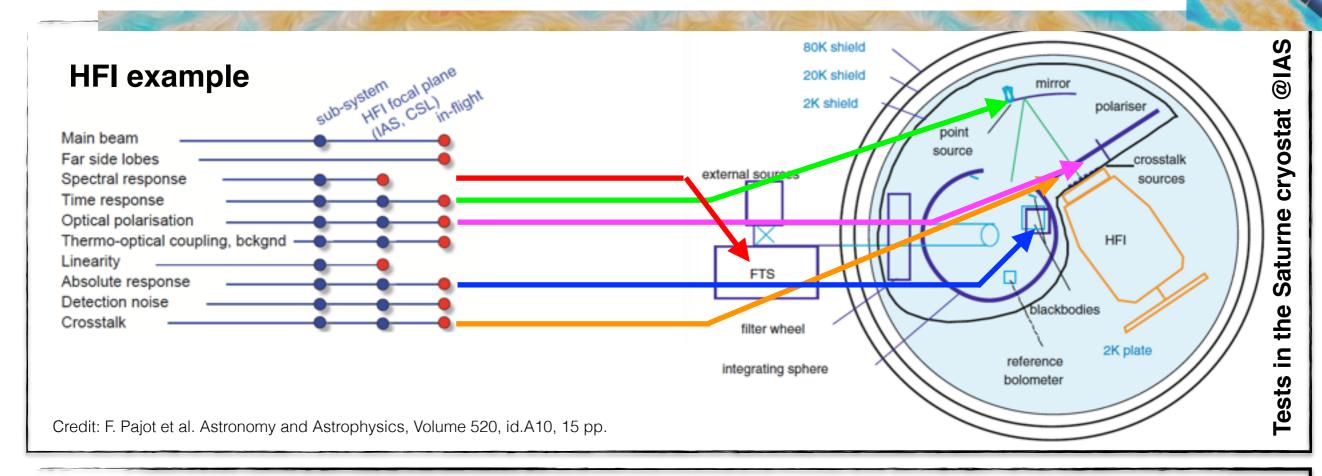

Hillipop: likelihood for the small angular scales


Lollipop: likelihood for the high angular scales

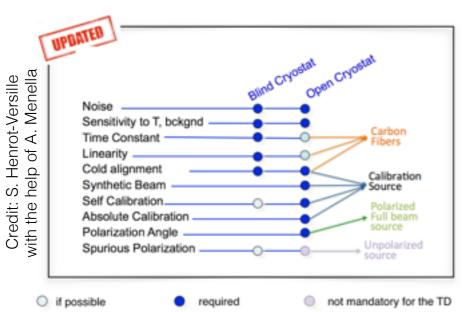
Matthieu is one of the precursors of Xspectra techniques

Thibaut is the leader of the ACTPol spectra and parameters paper

Extraction of cosmological parameter


Development of CAMEL, a software for frequentist and Bayesian cosmological analysis

Physics [group publications]: A(CDM), Neutrinos, Gravitational waves bkg constraints (with


Virgo/LAL),

within Planck: Lead of the map making papers, + Reionisation paper, participation in the BICEP/Planck paper, likelihoods, cosmo (...) (and older...pre-launch papers...)

Material for discussion

QUBIC example

Name	"Active source" CAL1
	(i.e. monochromatic near field source)
	Controlled frequency emitters (130-170 GHz & 190-245 GHz) with output feed 10° FWHM + folding flat mirror Distance from the cryostat window around 11 m (TBD)
Goals	 a) Map of the PSF on the "good quarter" of ONAFP to be compared with sims (fixed pointing, HWP modulation?)
	b) Map of the SB pattern (scans towards the source in elex and/or in az: TBD alt/az angle steps)
	 c) Cut of the SB pattern (scans towards the source in elex and/or in az; TBD alt/az angle steps)
	d) check that we are able to measure the instrumental polarization measurements within XXX%
Pros	 Frequency sweep allows to sample the PSF and the Synthesized beam pattern at discrete wavelengths
	Even in the near field it is possible to map an interference pattern, see sims.
Limitations	 Low output power changes along the sweep in frequency (TBD if must be monitored to compare absolute value of PSF at different colours)
	All the measurements are done at one fixed polarization axis; difficult to handle a polarization axis rotation.
	No measurements to check misalignment of the cold optics vs elevation

APC
/
1

Name	Full beam calibrator	
	(i.e. very near field thermal source)	
	A 45° tilted beamsplitter in front of the feedarray to generate two sources: sky (or warm BB) & ambient BB with linear polarised emission Possible azimuth rotation of the whole forebaffle step-by-step by hand	
Goals	a) check that we are able to reconstruct the polarization angle of the full	
	beam calibrator within XXX% (see Limitation 1)	
Pros	Compact calibrator	
	Broadband emission	
	3.	
Limitations	 Useful for single beam instrument (see BICEP2). Possible different behaviour for each feedhorn (see horns at the edges) What about the polarization performances of the SB? 	
	A large dielectric beamsplitter (around 1 meter)	
	3. Azimuthal rotation	

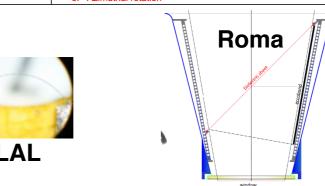


table: credit M. De Petris

AP

Tests will be performed